Home
Class 12
MATHS
" If "x^(2)+bx+c=0,x^(2)+cx+b=0(b!=c)" h...

" If "x^(2)+bx+c=0,x^(2)+cx+b=0(b!=c)" have a common root,then show that "b+c+1=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(2)+bx+c=0,x^(2)+cx+b=0(b!=c) have a common root then b+c=

If x^(2)+bx+c=0, x^(2)+cx+b=0 (b ne c) have a common root, then show that b+c+1=0

If x^(2)+bx+c=0, x^(2)+cx+b=0 (b ne c) have a common root, then show that b+c+1=0

IF x^2 +bx +c=0, x^2+cx +b=0 (b ne c) have a coomon root then b+c=

If the quadratic equations ax^(2)+2bx+c=0 and ax^(2)+2cx+b=0, (b ne c) have a common root, then show that a+4b+4c=0

If the quadratic equations x^(2)+bx+c=0 and bx^(2)+cx+1=0 have a common root then prove that either b+c+1=0 or b^(2)+c^(2)+1=bc+b+c

If the equation ax^2+2bx+c=0 and ax^2+2cx+b=0 b!=c have a common root ,then a/(b+c =

If x^(2)+ax+bc=0 and x^(2)+bx+ca=0 have a common root,then a+b+c=1

If ax^(2)+ bx +c and bx ^(2) + ax + c have a common factor x +1 then show that c=0 and a =b.

If ax^(2)+ bx +c and bx ^(2) + ax + c have a common factor x +1 then show that c=0 and a =b.