Home
Class 11
MATHS
" 1.If "(a+bx)/(a-bx)=(b+cx)/(b-cx)=(c+d...

" 1.If "(a+bx)/(a-bx)=(b+cx)/(b-cx)=(c+dx)/(c-dx)(x!=0)" then show that "a,b,c,d" are in GP "

Promotional Banner

Similar Questions

Explore conceptually related problems

If (a+bx)/(a-bx)=(b+cx)/(b-cx)=(c+dx)/(c-dx)(x!=0) then show that a,b,c and d are in G.P.

(a+bx)/(a-bx)=(b+cx)/(b-cx)=(c+dx)/(c-dx)(x!=0) then show that a,b,c and d are in G.P.

If (a+bx)/(a-bx)=(b+cx)/(b-cx)=(c+dx)/(c-dx)(xne0) then show that a,b,c and d are in G.P.

If (a+bx)/(a-bx)=(b+cx)/(b-cx)=(c+dx)/(c-dx)(x ne 0) show that a,b,c,d are in G.P.

If (a+bx)/(a-bx)=(b+cx)/(b-cx)=(c+dx)/(c-dx)( x ne 0) then show that a, b, c and d are in G.P.

If (a+bx)/(a-bx)=(b-cx)/(b-cx)=(c+dx)/(c-dx)( x ne 0) then show that a, b, c and d are in G.P.

If (a+bx)/(a-bx)=(b-cx)/(b-cx)=(c+dx)/(c-dx)( x ne 0) then show that a, b, c and d are in G.P.

If (a+bx)/(a-bx)=(b-cx)/(b-cx)=(c+dx)/(c-dx)( x ne 0) then show that a, b, c and d are in G.P.

If (a+bx)/(a-bx)=(b+cx)/(b-cx)=(c+dx)/(c-dx) (x+-0) then show a,b,c and d are in G.P

If (a+bx)/(a-bx)=(b +cx)/(b-cx)=(c+dx)/(c-dx) (x ne 0) , then show that a, b, c and d are in G.P.