Home
Class 12
MATHS
y=sin^(-1)((1-x^(2))/(1+x^(2))),0<x<1...

y=sin^(-1)((1-x^(2))/(1+x^(2))),0

Promotional Banner

Similar Questions

Explore conceptually related problems

Find dy/dx If y=sin^(-1)(frac(1-x^2)(1+x^2)) , 0 < x < 1

Find the value of: tan((1)/(2)[(sin^(-1)(2x))/(1+x^(2))+(cos^(-1)(1-y^(2)))/(1+y^(2))]),|x| 0 and xy,|x| 0

sin^(-1)x+sin^(-1)y=cos^(-1)(sqrt(1-x^(2))sqrt(1-y^(2))-xy) if x in[0,1],y in[0,1]

Find the value of: tan(1/2 [sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))]),|x| 0 and x y < 1

(dy)/(dx) if y=sin^(-1)x+sin^(-1)sqrt(1-x^(2)),x is 0 to 1

If x,y>0, then the range of sin^(-1)((x)/(1+x^(2)))+sin^(-1)((2y)/(1+y^(2))) is (0,(2 pi)/(3)]

Find the value of the following: tan [1/2[sin^(-1) ((2x)/(1+x^2))+cos^(-1) ((1-y^2)/(1+y^2))]], |x| 0 and x y < 1 .

sin^(-1)x+sin^(-1)y=cos^(-1)""{sqrt((1-x^(2))(1-y^(2)))-xy}

if y=(1)/(2)sin^(-1)((2xy)/(x^(2)+y^(2))) and y

If y=sin^(-1)x/sqrt(1-x^(2)) show that (1-x^(2))y_(2)-3xy_(1)-y=0 .