Home
Class 12
" 24.Show that "C(0)+(C(1))/(2)+(C(2))/(...

" 24.Show that "C_(0)+(C_(1))/(2)+(C_(2))/(3)+.........(C_(n))/(n+1)=(2^(n+1)-1)/(n+1)

Promotional Banner

Similar Questions

Explore conceptually related problems

C_(0)-(C_(1))/(2)+(C_(2))/(3)-............(-1)^(n)(C_(n))/(n+1)=(1)/(n+1)

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+.....+C_(n)x^(n) then show : (C_(0))/(1)+(C_(1))/(2)+(C_(2))/(3)+......+(C_(n))/(n+1)=(2^(n+1)-1)/(n+1)

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+…+C_(n)x^(n) , show that, (C_(0))/(1)+(C_(1))/(2)+(C_(2))/(3)+…+(C_(n))/(n+1)=(2^(n+1))/(n+1)

C_(0)-(C_(1))/(2)+(C_(2))/(3)-......+(-1)^(n)(C_(n))/(n+1)=(1)/(n+1)

If (1+x)^(n)=sum_(r=0)^(n)C_(r)x^(r), show that (C_(0))/(2)+(C_(1))/(3)+(C_(2))/(4)+...+(C_(n))/(n+2)=(n*2^(n+1)+1)/((n+1)(n+2))

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+.....+C_(n)x^(n) then show : (C_(0))/(1)-(C_(1))/(2)+(C_(2))/(3)-......+(-1)^(n).(C_(n))/(n+1)=(1)/(n+1)

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+.....+C_(n)x^(n) then show : C_(0)^(2)+(C_(1)^(2))/(2)+(C_(2)^(2))/(3)+.....+(C_(n)^(2))/(n+1)=((2n+1)!)/({(n+1)!}^(2))

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - (C_(1))/(2) + (C_(2))/(3) -…+ (-1)^(n) (C_(n))/(n+1) = (1)/(n+1) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - (C_(1))/(2) + (C_(2))/(3) -…+ (-1)^(n) (C_(n))/(n+1) = (1)/(n+1) .

Prove that (i) C_(1)+2C_(2)+3C_(3)+……+nC_(n)=n.2^(n-1) (ii) C_(0)+(C_(1)/(2)+(C_(2))/(3)+….+(C_(n))/(n+1)=(2^(n+1)-1)/(n+1)