Home
Class 11
MATHS
The number of positive integers satisfyi...

The number of positive integers satisfying `x+(log)_(10)(2^x+1)=x(log)_(10)5+(log)_(10)6` is...........

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for x : x+(log)_(10)(1+2^x)=x(dot(log)_(10)5+log_(10)6)

Solve for x:x+(log)_(10)(1+2^(x))=x log_(10)5+log_(10)6

if x+log_(10)(1+2^(x))=x log_(10)5+log_(10)6 then x

The value of x satisfying x+log_10(1+2^x)=x log_10 5+log_10 6 is

Find the value of x satisfying (log_(10)(2^(x)+x-41)=x(1-log_(10)5)

Solve x+log_10(2^x+1)= log_10 6+xlog_10 5 .

The value of x satisfying the equation x + log_(10) (1 + 2^x) = x log_10 5 + log_10 6 is

if x+log_10 (1+2^x)=xlog_10 5+log_10 6 then x