Home
Class 10
MATHS
y=e^(sin^(-1)2x)...

y=e^(sin^(-1)2x)

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^("sin"^(-1)x)andz=e^(-"cos"^(-1)x) , prove that dy/(dz)=e^(pi//2) .

" 1(a) If "y=e^(a sin^(-1)x)" ,show that "(1-x^(2))y_(2)-xy_(1)-a^(2)y=0

If y=e^(m sin^(-1)x) then prove that (1-x^2) y_2 - xy_1 = m^2 y

If y=e^(m sin^(-1)x) , then the value of [(d^(2)y)/(dx^(2))]_(x=0) is -

If f(x) = frac{sin^(-1)x}{sqrt (1-x^2)} , g(x)=e^(sin^(-1)x) , then int f(x)g(x) dx =........................ A) e^(sin^(-1)x) (sin^(-1)x-1) + c B) e^( sin^(-1)x) (1- sin^(-1)x) + c C) e^(sin^(-1)x) (sin^(-1)x+1) + c D) -e^(sin^(-1)x) (sin^(-1)x-1) + c

If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal to

If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal to

If y = e^(sin^(-1)(t^(2)-1)) & x = e^(sec-1((1)/(t^(2-1))) then (dy)/(dx) is equal to