Home
Class 11
MATHS
Consider three points P = (-sin (beta-al...

Consider three points `P = (-sin (beta-alpha), -cos beta)`, `Q = (cos(beta-alpha), sin beta)`, and `R = ((cos (beta - alpha + theta), sin (beta - theta))`, where `0< alpha, beta, theta < pi/4` Then

Promotional Banner

Similar Questions

Explore conceptually related problems

(cos alpha + cos beta) ^ (2) + (sin alpha-sin beta) ^ (2) = 4 (cos ^ (2) (alpha + beta)) / (2)

(sinalpha cos beta+cos alpha sin beta)^2+(cos alpha cos beta-sin alpha sin beta)^2=1

If cos alpha + cos beta = 0 = sin alpha + sin beta, then value of cos 2 alpha + cos 2 beta is

cos alpha sin (beta-gamma) + cos beta sin (gamma-alpha) + cos gamma sin (alpha-beta) =

cos (alpha + beta) cos gamma-cos (beta + gamma) cos alpha = sin beta sin (gamma-alpha)

det[[cos alpha cos beta,cos alpha sin beta,-sin alpha-sin beta,cos beta,0sin alpha cos beta,sin alpha sin beta,cos alpha]]

Find the value of, cos alpha cos beta, cos alpha sin beta, -no alpha-sin beta, cos beta, 0 sin alpha cos beta, sin alpha sin beta, cos alpha] |