Home
Class 10
MATHS
x/(x-1)+(x-1)/x=4 1/4, x!=0, 1...

`x/(x-1)+(x-1)/x=4 1/4, x!=0, 1`

Promotional Banner

Similar Questions

Explore conceptually related problems

(3) / (x + 1) + (4) / (x-1) = (29) / (4x-1); x! = 1, -1, (1) / (4)

What is (8x)/(1-x^(4)) - (4x)/(x^(2) +1) +(x+1)/(x-1) - (x-1)/(x+1) equal to?

(1)/(x+1)+(2)/(x+2)=(4)/(x+4),x!=-1,x!=-2,x!=-4

(x-1)^4+4(x-1)^3+6(x-1)^2+4 (x-1)+1 = ?

Factorize : [5x-1/x]^(2)+4[5x-1/x]+4,x!=0

1/(x+1)-1/(x+2)-1/(x+3)+1/(x+4)=0 then x=

Solve for x in (4x-1)/(4x+1)+(4x+1)/(4x-1)=(10)/(3)

Without expanding, find the value of: (i) (x + 1)^4 - 4(x + 1)^3 (x - 1) + 6(x + 1)^2 (x - 1)^2 - 4(x + 1) (x - 1)^3 + (x -1)^4 (ii) (2x - 1)^4 + 4(2x - 1)^3 (3 - 2x) + 6(2x - 1)^2 (3 - 2x)^2 + 4(2x - 1) (3 - 2x)^3 + (3 - 2x)^4