Home
Class 10
MATHS
sqrt((1+sin theta)/(1-sin theta))+sqrt((...

sqrt((1+sin theta)/(1-sin theta))+sqrt((1-sin theta)/(1+sin theta))=2sec theta

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sqrt((1-sin theta)/(1+sin theta))+sqrt((1+sin theta)/(1-sin theta))=-2/cos theta ,where pi/2ltthetaltpi .

If pi/2 < theta < pi, then sqrt((1- sin theta)/(1+ sin theta))+sqrt((1+ sin theta)/(1- sin theta)) is equal to

If pi/2 lt theta lt pi then sqrt((1-sin theta)/(1+sin theta))+sqrt((1+sin theta)/(1-sin theta))=

If (pi)/(2)

If theta lies in the second quadrant. Then the value of sqrt((1-sin theta)/(1+sin theta))+sqrt((1+sin theta)/(1-sin theta)) is equal to :

If 0 < theta < pi , then the value of sqrt((1 - sin theta)/(1 + sin theta)) + sqrt((1 + sin theta)/(1 - sin theta)) will be-

If theta lies in the second quadrant. Then the value of sqrt((1-sin theta)/(1+sin theta))+sqrt((1+sin theta)/(1-sin theta)) is equal to :

If -pi lt theta lt -(pi)/(2)," then " |sqrt((1-sin theta)/(1+sintheta))+sqrt((1+sin theta)/(1-sin theta))| is equal to :

If -pi lt theta lt -(pi)/(2)," then " |sqrt((1-sin theta)/(1+sintheta))+sqrt((1+sin theta)/(1-sin theta))| is equal to :

If theta lies in the second quadrant, then sqrt((1-sintheta)/(1+sin theta))+sqrt((1+sin theta)/(1-sin theta)) is equal to :