Home
Class 14
MATHS
" If "hat a,hat b,hat c" are three unit ...

" If "hat a,hat b,hat c" are three unit vectors such that "hat b" and "hat c" are non-parallel and "hat a times(hat b timeshat c)=(1)/(2)hat b

Promotional Banner

Similar Questions

Explore conceptually related problems

If hat(a),hat(b),hat(c) are three unit vectors such that hat(b)andhat(c) are non-parallel and hat(a)xx(hat(b)xxhat(c))=(1)/(2)hat(b)," find the angle between "vec(a)andvec(c).

If hat a , hat b ,a n d hat c are three unit vectors, such that hat a+ hat b+ hat c is also a unit vector and theta_1,theta_2a n dtheta_3 are angles between the vectors hat a , hat b ; hat b , hat ca n d hat c , hat a respectively, then among theta_1,theta_2,a n dtheta_3dot a. all are acute angles b. all are right angles c. at least one is obtuse angle d. none of these

If hat a , hat b ,a n d hat c are three unit vectors, such that hat a+ hat b+ hat c is also a unit vector and theta_1,theta_2a n dtheta_3 are angles between the vectors hat a , hat b ; hat b , hat ca n d hat c , hat a respectively, then among theta_1,theta_2,a n dtheta_3dot a. all are acute angles b. all are right angles c. at least one is obtuse angle d. none of these

If hat a , hat b ,a n d hat c are three unit vectors, such that hat a+ hat b+ hat c is also a unit vector and theta_1,theta_2 and theta_3 are angles between the vectors hat a , hat b ; hat b , hat ca n d hat c , hat a respectively, then among theta_1,theta_2 and theta_3 . a. all are acute angles b. all are right angles c. at least one is obtuse angle d. none of these

If hat a , hat b ,a n d hat c are three unit vectors, such that hat a+ hat b+ hat c is also a unit vector and theta_1,theta_2a n dtheta_3 are angles between the vectors hat a , hat b ; hat b , hat ca n d hat c , hat a respectively, then among theta_1,theta_2,a n dtheta_3dot a. all are acute angles b. all are right angles c. at least one is obtuse angle d. none of these

If hat a ,\ hat b are unit vector such that \ hat a+ hat b is a unit vectors, write the value of | hat a- hat b|dot

Let hat a , hat b , hatc be unit vectors such that hat a * hatb =hat a *hatc =0 and the angle between hat b and hat c be (pi)/(6) prove that hat a =+- 2 (hatb xx hat c )

If hat a , hat b ,a n d hat c are unit vectors, then | hat a+hat b|^2+| hat b- hat c|^2+| hat c- hat a|^2 does not exceed

If hat a , hat b ,a n d hat c are unit vectors, then | hat a-hat b|^2+| hat b- hat c|^2+| hat c- hat a|^2 does not exceed

If hat a , hat b ,a n d hat c are unit vectors, then | hat a- hat b|^2+| hat b- hat c|^2+| hat c- hat a|^2 does not exceed