Home
Class 12
MATHS
If cosx+cos^2x=1 then sinx+sin^2x=...

If `cosx+cos^2x=1` then `sinx+sin^2x=`

Promotional Banner

Similar Questions

Explore conceptually related problems

cosx + sinx = cos2x + sin2x

If f(x) = \begin{vmatrix} cos2x & cos2x & sin2x \\ -cosx & cosx & -sinx\\ sinx & sinx & cosx \end{vmatrix} then

If f(x) = |{:( cos (2x) ,, cos ( 2x ) ,, sin ( 2x) ), ( - cos x,, cosx ,, - sin x ), ( sinx,, sin x,, cos x ):}| , then

If f(x) = |{:( cos (2x) ,, cos ( 2x ) ,, sin ( 2x) ), ( - cos x,, cosx ,, - sin x ), ( sinx,, sin x,, cos x ):}| , then

If f(x) = |{:( cos (2x) ,, cos ( 2x ) ,, sin ( 2x) ), ( - cos x,, cosx ,, - sin x ), ( sinx,, sin x,, cos x ):}| , then

If sin2x=1 , then |(0,cosx,-sinx),(sinx,0,cosx),(cosx,sinx,0)| equals :

prove that [2(sin^3 x - cos^3 x )/(sinx -cosx)]-sin2x=2

(sin^(3)x)/(1 + cosx) + (cos^(3)x)/(1 - sinx) =

(sin^(3)x)/(1 + cosx) + (cos^(3)x)/(1 - sinx) =

(sin^(3)x)/(1 + cosx) + (cos^(3)x)/(1 - sinx) =