Home
Class 12
MATHS
" The value of "int(1.0)^(tan x)(tdt)/(1...

" The value of "int_(1.0)^(tan x)(tdt)/(1+t^(2))+int_(1.0)^(cos x)(dt)/(t(1+t^(2)))," where "x in((pi)/(6),(pi)/(3))" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(1//e)^(tanx)(tdt)/(1+t^(2))+int_(1/e)^(cotx)(dt)/(t(1+t^(2))) is equal to

The value of int_((1)/(epsilon))^(tan x)(tdt)/(1+t^(2))+int_((1)/(epsilon))^(cot x)(dt)/(t(1+t^(2))), where x in((pi)/(6),(pi)/(3)), is equal to: (a)0(b) 2 (c) 1 (d) none of these

The value of int_(1//e)^(tanx)(t)/(1+t^(2))dt+int_(1//e)^(cotx)(1)/(t(1+t^(2)))dt , where x in (pi//6, pi//3 ), is equal to :

The value of int_(1/e)^(tanx)(tdt)/(1+t^2)+int_(1/e)^(cotx)(dt)/(t(1+t^2)), where x in (pi/6,pi/3) , is equal to: (a)0 (b) 2 (c) 1 (d) none of these

The value of int_(1/e)^(tanx)(tdt)/(1+t^2)+int_(1/e)^(cotx)(dt)/(t(1+t^2)), where x in (pi/6,pi/3) , is equal to: (a)0 (b) 2 (c) 1 (d) none of these

the value of int_((1)/(e)rarr tan x)(tdt)/(1+t^(2))+int_((1)/(e)rarr cot x)(dt)/(t*(1+t^(2)))=

[int_(1/e)^( tan x)(tdt)/(1+t^(2))+int_(1/e)^( cot x)(dt)/(t(1+t^(2)))" is "],[" equal to "]

If x=int_(0)^(oo)(dt)/((1+t^(2))(1+t^(2017))) , then (3x)/(pi) is equal to