Home
Class 11
MATHS
The value of loga b-log|b|= loga (b) "...

The value of `loga b-log|b|=` `loga` (b) `"log"|a|` (c) `-loga` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of loga b-log|b|= (a) loga (b) "log"|a| (c) -loga (d) none of these

log_a (1/a) =

The value of log_a b log_b c log_c a is ………………. .

Prove that log_a (ab)+log_b (ab)=log_a (ab).log_b (ab)

Q. If log_x a, a^(x/2) and log_b x are in G.P. then x is equal to (1) log_a(log_b a) (2) log_a(log_e a)+log_a log_b b (3) -log_a(log_a b) (4) none of these

Prove that log_a x.log_b y=log_b x.log_a y

If a, b, c are distinct positive real numbers each different from unity such that (log_b a.log_c a -log_a a) + (log_a b.log_c b-logb_ b) + (log_a c.log_b c - log_c c) = 0, then prove that abc = 1.

Prove that log_a x.log_b a.log_c b.log_x c=1