Home
Class 12
" If "x^(2)+y^(2)+z^(2)=r^(2)," then "ta...

" If "x^(2)+y^(2)+z^(2)=r^(2)," then "tan^(-1)((xy)/(zr))+tan^(-1)((yz)/(xr))+tan^(-1)((xz)/(yr))=

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(2)+y^(2)+z^(2)=r^(2), thentan ^(-1)((xy)/(zr))+tan^(-1)((yz)/(xr))+tan^(-1)((xz)/(yr)) is equal to pi(b)(pi)/(2)(c)0(d) none of these

If x^(2)+y^(2)+z^(2)=r^(2) and x,y,z>0, then tan^(-1)((xy)/(zr))+tan^(-1)((yz)/(xz))+tan^(-1)((zx)/(yr)) is equal to

If x, y, z are all non zero and x^(2)+y^(2)+z^(2)=r^(2) then tan ^(-1)((y z)/(x r))+tan ^(-1)((z x)/(y r))+tan ^(-1)((x y)/(z r))

If x^2 + y^2 + z^2 = r^2 and x, y, z > 0 , then tan^-1((xy)/(zr))+tan^-1((yz)/(xr))+tan^-1((zx)/(yr)) is equal to

If r^2 = x^2 + y^2 + z^2 , then prove that tan^(-1)((yz)/(rx))+tan^(-1)((zx)/(ry))+tan^(-1)((xy)/(rz))=pi/2

If r^2 =x^2 +y^2+z^2, "Prove that" "tan"^(-1) (yz)/(xr) ="tan"^(-1) (zx)/(yr) +"tan"^(-1) (xy)/(zr) =pi/2