Home
Class 12
MATHS
[lambda^(2)-2 lambda+1quad lambda-2],[1-...

[lambda^(2)-2 lambda+1quad lambda-2],[1-lambda^(2)+2 lambda]quad =A lambda^(2)+B lambda+C" where "A,B,C" are matrices then "B

Promotional Banner

Similar Questions

Explore conceptually related problems

If [(lambda^(2)-2lambda+1,lambda-2),(1-lambda^(2)+3lambda,1-lambda^(2))]=Alambda^(2)+Blambda+C where A,B,C are matrices then B + C = a) [(-1,-1),(4,1)] b) [(1,-1),(4,1)] c) [(1,1),(-4,1)] d) [(-1,-1),(-4,1)]

If [(lambda^(2)-2lambda+1,lambda-2),(1-lambda^(2)+3lambda,1-lambda^(2))]=Alambda^(2)+Blambda+C, where A, B and C are matrices then A+B=

If [(lambda^(2)-2lambda+1,lambda-2),(1-lambda^(2)+3lambda,1-lambda^(2))]=Alambda^(2)+Blambda+C , where A, B and C are matrices then find matrices B and C.

If [(lambda^(2)-2lambda+1,lambda-2),(1-lambda^(2)+3lambda,1-lambda^(2))]=Alambda^(2)+Blambda+C , where A, B and C are matrices then find matrices B and C.

If [(lambda^(2)-2lambda+1,lambda-2),(1-lambda^(2)+3lambda,1-lambda^(2))]=Alambda^(2)+Blambda+C , where A, B and C are matrices then find matrices B and C.

If [(lambda^(2)-2lambda+1,lambda-2),(1-lambda^(2)+3lambda,1-lambda^(2))]=Alambda^(2)+Blambda+C , where A, B and C are matrices then find matrices B and C.

det [[lambda ^ (4) +2 lambda ^, 2 lambda ^ (3) -3,3 lambda ^ (2) + lambda2,3,15,0,2]] = a lambda ^ (4) + b lambda ^ (3) + c lambda ^ (2) + d lambda + e

If plambda^4+qlambda^3+rlambda^2+slambda+t=|[lambda^2+3lambda, lambda-1, lambda+3] , [lambda^2+1, 2-lambda, lambda-3] , [lambda^2-3, lambda+4, 3lambda]| then t=

If plambda^4+qlambda^3+rlambda^2+slambda+t=|[lambda^2+3lambda, lambda-1, lambda+3] , [lambda^2+1, 2-lambda, lambda-3] , [lambda^2-3, lambda+4, 3lambda]| then t=

|[a^(2)+lambda^(2),ab+c lambda,ca-b lambdaab-c lambda,b^(2)+lambda^(2),bc+aca+b lambda,bc-a lambda,c^(2)+lambda^(2) then he value of lambda is 8 b.27, c.1 d.-1=(1+a^(2)+b^(2)+c^(2))^(3)