Home
Class 12
MATHS
If (cot^-1 x)^2−7(cot^-1 x)+10 > 0 then...

If `(cot^-1 x)^2−7(cot^-1 x)+10 > 0` then range of x will be (A) `(-oo,cot 2)` (B) `(-oo,cot5)` (C) `(cot2,cot5)` (D) `(cot2,oo)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (cot^(-1)x)^(2)-7(cot^(-1)x)+10>0 then range of x will be (A)(-oo,cot2)(B)(-oo,cot5)(C)(cot2,cot5)(D)(cot2,oo)

Solution set of inequality (cot^-1x)^2-5cot^-1x+6>0 is (A) (cot 3 , cot2) (B) (-oo, cot3) uu (cot2 , oo) (C) (cot2, oo) (D) None of these

If (cot^(-1)x)^(2)-7(cot^(-1)x)+10 gt 0 , then x lies in the interval

Solution set of inequality (cot^(-1)x)^(2)-5cot^(-1)x+6>0 is (A) (cot3,cot2)(B)(-oo,cot3)uu(cot2,oo)(C)(cot2,oo)(D) None of these

If 0ltalphaltpi/4 then the range of cosec 2alpha-cot 2alpha is (A) (0,1) (B) [1,oo) (C) RR (D) [0,oo)

If 0ltalphaltpi/4 then the range of cosec 2alpha-cot 2alpha is (A) (0,1) (B) [1,oo) (C) RR (D) [0,oo)

The function f(x)=cot^(-1)x+x increases in the interval (a) (1,\ oo) (b) (-1,\ oo) (c) (-oo,\ oo) (d) (0,\ oo)

Show that cot 2x cot x - cot 3x cot 2x -cot x=1

cot x cot 2x-cot 2x cot3x-cot3x cotx=1

Prove that cot 2x cot x- cot 3x cot 2x - cot 3x cot x=1