Home
Class 12
MATHS
. For x in R^+, if x, [x], {x} are in ha...

. For `x in R^+, if x, [x], {x}` are in harmonic progression then the value of x can not be equal to (where [*] denotes greatest integer function, {*} denotes fractional part function)

A

`(1)/(sqrt2) tan ""pi/8`

B

` (1)/(sqrt2) cot ""pi/8`

C

`(1)/(sqrt2) tan ""(pi)/(12)`

D

`(1)/(sqrt2) cot ""(pi)/(12)`

Text Solution

Verified by Experts

The correct Answer is:
A, C, D
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    VK JAISWAL|Exercise COMPREHENSION TYPE PROBLEMS|15 Videos
  • FUNCTION

    VK JAISWAL|Exercise MATCHING TYPE PROBLEMS|7 Videos
  • FUNCTION

    VK JAISWAL|Exercise SUBJECTIVE TYPE PROBLEMS|34 Videos
  • ELLIPSE

    VK JAISWAL|Exercise Exercise-4 : Subjective Type Problems|2 Videos
  • HYPERBOLA

    VK JAISWAL|Exercise Exercise-4 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

. For x in R^(+), if x,[x],{x} are in harmonic progression then the value of x can not be equal to (where [*] denotue greatest integer function,{^(*)} denotes fractional part function)

Solve : 4{x}= x+ [x] (where [*] denotes the greatest integer function and {*} denotes the fractional part function.

Consider the function f(x) = {x+2} [cos 2x] (where [.] denotes greatest integer function & {.} denotes fractional part function.)

The number of values of x such that x, [x] and {x} are in arithmetic progression is equal to (where [.] denotes the greatest integer function and {.} denotes the fractional part function)

Solve the following inequalities (where [*] denotes greatest integer function and {*} represent fractional part function) [2x^(2)-x]<1

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

Period of f(x)=sgn([x]+[-x]) is equal to (where [.] denotes greatest integer function

The sum of solutions of the equation 2[x] + x =6{x} is (where [.] denotes the greatest integer function and {.} denotes fractional part function)

If f(x)=[2x], where [.] denotes the greatest integer function,then

VK JAISWAL-FUNCTION -ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT
  1. Let f (x)= {{:(x ^(2),0lt x lt2),(2x-3, 2 le x lt3),(x+2, x ge3):} the...

    Text Solution

    |

  2. Let f: [(2pi)/(3), (5pi)/(3)]to[0,4] be a function difined as f (x) =s...

    Text Solution

    |

  3. Let f (x) be invertible function and let f ^(-1) (x) be is inverse. Le...

    Text Solution

    |

  4. Find the value of cos^(-1)((x)/(2)+(sqrt(3-3x^(2)))/(2))

    Text Solution

    |

  5. Let f:R rarr R defined by f(x)=cos^(-1)(-{-x}), where {x} denotes fra...

    Text Solution

    |

  6. Which option (s) is/are ture ?

    Text Solution

    |

  7. If f (x) =[ln (x)/(e) +[ln (e)/(x)], where [.] denotes greatest interg...

    Text Solution

    |

  8. If f (x0= {{:(x ^(3), , x ne Q),(-x ^(3),,x ne Q):}, then :

    Text Solution

    |

  9. Let f(x) be a real valued function such that f(0)=1/2 and f(x+y)=f(x)f...

    Text Solution

    |

  10. f (x) is an even periodic function with period 10 In [0,5], f (x) = {{...

    Text Solution

    |

  11. For the equation (e ^(-x))/(1+x)= lamda which of the following stateme...

    Text Solution

    |

  12. . For x in R^+, if x, [x], {x} are in harmonic progression then the va...

    Text Solution

    |

  13. The equation ||x-1|+a | =4,a in R, has :

    Text Solution

    |

  14. Let f (n)(x) = (sin x )^(1//pi) , x in R, then:

    Text Solution

    |

  15. If the domain of f (x) =1/picos ^(-1)[log (3) ((x^(3))/(3))] where, x ...

    Text Solution

    |

  16. The number of real values of x satisfying the equation;[(2x+1)/3]+[(4x...

    Text Solution

    |

  17. Let f (x= sin ^(6) ((x )/(4)) + cos ^(6) ((x)/(4)). If f ^(n) (x) deno...

    Text Solution

    |

  18. Which of the following is (are) incorrect ?

    Text Solution

    |

  19. If [x] denotes the integral part of x for real x, and S= [(1)/(4)]+[...

    Text Solution

    |

  20. Let f(x) = log ({x}) [x] g (x) =log ({x})-{x} h (x) log ({x}) {x}...

    Text Solution

    |