Home
Class 12
MATHS
Let f (x) be a continuous function (defi...

Let `f (x)` be a continuous function (define for all x) which satisfies `f ^(3) (x)-5 f ^(2) (x)+ 10f (x) -12 ge 0, f ^(2) (x) + 3 ge 0 and f ^(2) (x) -5f(x)+ 6 le 0`
If distinct positive number `b_(1), b _(2) and b _(3)` ar in G.P. then `f (1)+ ln b _91), f (2) + ln b _(2), f (3)+ ln b _(3)` are in :

A

A.P.

B

G.P.

C

H. P.

D

A. G. P.

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    VK JAISWAL|Exercise MATCHING TYPE PROBLEMS|7 Videos
  • FUNCTION

    VK JAISWAL|Exercise SUBJECTIVE TYPE PROBLEMS|34 Videos
  • FUNCTION

    VK JAISWAL|Exercise ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT|25 Videos
  • ELLIPSE

    VK JAISWAL|Exercise Exercise-4 : Subjective Type Problems|2 Videos
  • HYPERBOLA

    VK JAISWAL|Exercise Exercise-4 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

Let f (x) be a continuous function (define for all x) which satisfies f ^(3) (x)-5 f ^(2) (x)+ 10f (x) -12 ge 0, f ^(2) (x) + 3 ge 0 and f ^(2) (x) -5f(x)+ 6 le 0 The equation of tangent that can be drawn from (2,0) on the curve y = x^(2) f (sin x) is :

Let f(x) be a continuous function defined from [0,2]rarr R and satisfying the equation int_(0)^(2)f(x)(x-f(x))dx=(2)/(3) then the value of 2f(1)

If a continuous function f satisfies int_(0)^(f(x))t^(3)dt=x^(2)(1+x) for all x>=0 then f(2)

Let f(x) be a continuous function defined for 0lexle3 , if f(x) takes irrational values for all x and f(1)=sqrt(2) , then evaluate f(1.5).f(2.5) .

Let f(x) be a function defined as below : f(x)=sin(x^(2)-3x) ,x le 0 =6x+5x^(2), x gt 0 then at x=0 ,f(x)

Let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x in [0,a] . Then int_0^a dx/(1+e^(f(x)))= (A) a (B) a/2 (C) 1/2f(a) (D) none of these

Let f be a function defined by f(x) = 2x^(2) - log |x|, x ne 0 then

Let f(x) is a continuous function such that f(-1) = -2,f(0) = -1,f(1) = 0,f (2) = 1, f(3) = 0,f (4) = -1 and f(5) = 1 then minimum number of roots of f'(x) + xf " (x) = 0 in the interval (-1,5) are