Home
Class 12
MATHS
Let f :[2,oo)to {1,oo) defined by f (x)=...

Let `f :[2,oo)to {1,oo)` defined by `f (x)=2^(x ^(4)-4x ^(3))and g : [(pi)/(2), pi] to A ` defined by `g (x) = (sin x+4)/(sin x-2)` be two invertible functions, then
The set "A" equals to

A

`[5,2]`

B

`[-2,5]`

C

`[-5,2]`

D

`[-5,-2]`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    VK JAISWAL|Exercise MATCHING TYPE PROBLEMS|7 Videos
  • FUNCTION

    VK JAISWAL|Exercise SUBJECTIVE TYPE PROBLEMS|34 Videos
  • FUNCTION

    VK JAISWAL|Exercise ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT|25 Videos
  • ELLIPSE

    VK JAISWAL|Exercise Exercise-4 : Subjective Type Problems|2 Videos
  • HYPERBOLA

    VK JAISWAL|Exercise Exercise-4 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

Let f :[2,oo)to {1,oo) defined by f (x)=2^(x ^(4)-4x ^(3))and g : [(pi)/(2), pi] to A defined by g (x) = (sin x+4)/(sin x-2) be two invertible functions, then f ^(-1) (x) is equal to

Let f:[4,oo)to[4,oo) be defined by f(x)=5^(x^((x-4))) .Then f^(-1)(x) is

The function f : [0,oo)to[0,oo) defined by f(x)=(2x)/(1+2x) is

f:(-(pi)/(2),(pi)/(2))rarr(-oo,oo) defined by f(x)=tan x is

If the function f:[1,oo)to[1,oo) is defined by f(x)=2^(x(x-1)) then f^(-1) is

Let f:(2,oo)to X be defined by f(x)= 4x-x^(2) . Then f is invertible, if X=

If the function f:[2,oo)rarr[-1,oo) is defined by f(x)=x^(2)-4x+3 then f^(-1)(x)=