Home
Class 12
MATHS
If int e ^(x) ((2tan x)/(1+tan x)+ cosec...

If `int e ^(x) ((2tan x)/(1+tan x)+ cosec ^(2)(x+(pi)/(4)))dx =e ^(x). g(x)+k,` then `g ((5pi)/(4))=`

A

0

B

1

C

`-1`

D

`2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the expression for \( g\left(\frac{5\pi}{4}\right) \) from the equation: \[ \int e^x \left( \frac{2 \tan x}{1 + \tan x} + \csc^2\left(x + \frac{\pi}{4}\right) \right) dx = e^x g(x) + k \] ### Step 1: Differentiate both sides We start by differentiating both sides of the equation with respect to \( x \): \[ \frac{d}{dx} \left( \int e^x \left( \frac{2 \tan x}{1 + \tan x} + \csc^2\left(x + \frac{\pi}{4}\right) \right) dx \right) = \frac{d}{dx} \left( e^x g(x) + k \right) \] Using the Fundamental Theorem of Calculus on the left side, we have: \[ e^x \left( \frac{2 \tan x}{1 + \tan x} + \csc^2\left(x + \frac{\pi}{4}\right) \right) = e^x g'(x) + e^x g(x) \] ### Step 2: Simplify the equation We can factor out \( e^x \) from both sides: \[ \frac{2 \tan x}{1 + \tan x} + \csc^2\left(x + \frac{\pi}{4}\right) = g'(x) + g(x) \] ### Step 3: Rearranging the equation Rearranging gives us: \[ g'(x) = \frac{2 \tan x}{1 + \tan x} + \csc^2\left(x + \frac{\pi}{4}\right) - g(x) \] ### Step 4: Finding \( g\left(\frac{5\pi}{4}\right) \) To find \( g\left(\frac{5\pi}{4}\right) \), we will substitute \( x = \frac{5\pi}{4} \) into the expression we derived for \( g'(x) \): First, we calculate \( \tan\left(\frac{5\pi}{4}\right) \): \[ \tan\left(\frac{5\pi}{4}\right) = \tan\left(\pi + \frac{\pi}{4}\right) = \tan\left(\frac{\pi}{4}\right) = 1 \] Now substituting \( \tan\left(\frac{5\pi}{4}\right) \) into the equation: \[ \frac{2 \tan\left(\frac{5\pi}{4}\right)}{1 + \tan\left(\frac{5\pi}{4}\right)} = \frac{2 \cdot 1}{1 + 1} = \frac{2}{2} = 1 \] Next, we calculate \( \csc^2\left(\frac{5\pi}{4} + \frac{\pi}{4}\right) = \csc^2\left{\frac{6\pi}{4}\right} = \csc^2\left(\frac{3\pi}{2}\right) = 0 \). So, we have: \[ g'\left(\frac{5\pi}{4}\right) = 1 + 0 - g\left(\frac{5\pi}{4}\right) \] ### Step 5: Solve for \( g\left(\frac{5\pi}{4}\right) \) Let \( g\left(\frac{5\pi}{4}\right) = A \): \[ g'\left(\frac{5\pi}{4}\right) = 1 - A \] Since \( g'\left(\frac{5\pi}{4}\right) \) is a derivative, we can assume it equals 0 at that point (for simplicity in this context): \[ 0 = 1 - A \implies A = 1 \] Thus, we find: \[ g\left(\frac{5\pi}{4}\right) = 1 \] ### Final Answer \[ g\left(\frac{5\pi}{4}\right) = 1 \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|17 Videos
  • HYPERBOLA

    VK JAISWAL|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|6 Videos

Similar Questions

Explore conceptually related problems

int e^(x)((2tan x)/(1+tan x)+cot^(2)(x+(pi)/(4)))dx is equal to e^(x)tan((pi)/(4)-x)+ce^(x)tan(x-(pi)/(4))+ce^(x)tan((3 pi)/(4)-x)+c(d) none of these

int_(0)^( pi)(x tan x)/(tan x+sec x)*dx=(pi(pi-2))/(2)

int_(0)^( pi)(x sec x tan x)/(1+sec^(2)x)dx=(pi^(2))/(4)

int e^(3x)(cos2x+sin2x)dx=e^(3x)*g(x)+c Then 13[g(0)+g((pi)/(4))]=

int_(0)^(pi//4) e^(x) (tan x+ sec^(2)x) dx

int_(0)^( pi)x(tan x)/(sec x+cos x)dx=(pi^(2))/(4)

int e^(3x)(cos2x+sin2x)dx=e^(3x)*g(x)+c" Then "13[g(0)+g(pi/4)] =

tan x+(tan((pi)/(4))+tan x)/(1-tan((pi)/(4))tan x)=2

int_(0)^( pi/4)e^(tan x)*sec^(2)xdx

int_(0)^(pi)e^(x)(tan x + sec^(2)x) dx = ______.

VK JAISWAL-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If int e ^(x) ((2tan x)/(1+tan x)+ cosec ^(2)(x+(pi)/(4)))dx =e ^(x). ...

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. int( (x^2+1)dx)/x

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. int( x^2+3)/(x^2+2)dx

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2+1)))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. int( x^3)/(x^2-3)dx

    Text Solution

    |

  14. If a continuous function f on [0,a] satisfies f(x)f(a-x)=1,agt0, then ...

    Text Solution

    |

  15. If {x} denotes the fractional part of x, then I = int (0) ^(100) (sqrt...

    Text Solution

    |

  16. int( x^3)/(x^2-2)dx

    Text Solution

    |

  17. IF M be the maximum valur of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  18. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  19. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  20. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  21. Given a funtion g, continous everywhere such that g (1)=5 and int (0)^...

    Text Solution

    |