Home
Class 12
MATHS
f (x) =2x -tan ^(-1) x - ln (x+ sqrt(1+ ...

`f (x) =2x -tan ^(-1) x - ln (x+ sqrt(1+ x ^(2)))`

A

strictly increases `AA x in R`

B

strictly increases only in `(0,oo)`

C

strictly decreases `AA x in R`

D

strictly decreases in `(o,oo)` and strictly increases I `(-oo, 0)`

Text Solution

AI Generated Solution

The correct Answer is:
To analyze the function \( f(x) = 2x - \tan^{-1}(x) - \ln(x + \sqrt{1 + x^2}) \) and determine whether it is strictly increasing or decreasing, we will follow these steps: ### Step 1: Find the derivative of \( f(x) \) We start by differentiating \( f(x) \): \[ f'(x) = \frac{d}{dx}(2x) - \frac{d}{dx}(\tan^{-1}(x)) - \frac{d}{dx}(\ln(x + \sqrt{1 + x^2})) \] Calculating each derivative: 1. The derivative of \( 2x \) is \( 2 \). 2. The derivative of \( \tan^{-1}(x) \) is \( \frac{1}{1 + x^2} \). 3. For \( \ln(x + \sqrt{1 + x^2}) \), we use the chain rule: \[ \frac{d}{dx}(\ln(u)) = \frac{1}{u} \cdot \frac{du}{dx} \] where \( u = x + \sqrt{1 + x^2} \). The derivative \( \frac{du}{dx} = 1 + \frac{x}{\sqrt{1 + x^2}} \). Thus, we have: \[ \frac{d}{dx}(\ln(x + \sqrt{1 + x^2}) = \frac{1 + \frac{x}{\sqrt{1 + x^2}}}{x + \sqrt{1 + x^2}} \] Putting it all together, we get: \[ f'(x) = 2 - \frac{1}{1 + x^2} - \frac{1 + \frac{x}{\sqrt{1 + x^2}}}{x + \sqrt{1 + x^2}} \] ### Step 2: Simplify \( f'(x) \) Now we need to simplify \( f'(x) \): \[ f'(x) = 2 - \frac{1}{1 + x^2} - \frac{1 + \frac{x}{\sqrt{1 + x^2}}}{x + \sqrt{1 + x^2}} \] To combine these fractions, we can find a common denominator. The common denominator will be \( (1 + x^2)(x + \sqrt{1 + x^2}) \). ### Step 3: Analyze the sign of \( f'(x) \) To determine whether \( f'(x) \) is positive or negative, we need to analyze each term. 1. The term \( 2 \) is always positive. 2. The term \( \frac{1}{1 + x^2} \) is always positive since \( 1 + x^2 > 0 \). 3. The term \( \frac{1 + \frac{x}{\sqrt{1 + x^2}}}{x + \sqrt{1 + x^2}} \) is also positive for all \( x \). Thus, we can conclude that: \[ f'(x) > 0 \quad \text{for all } x \in \mathbb{R} \] ### Step 4: Conclusion Since \( f'(x) > 0 \) for all \( x \), we conclude that \( f(x) \) is a strictly increasing function for every \( x \in \mathbb{R} \).
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|17 Videos
  • HYPERBOLA

    VK JAISWAL|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|6 Videos

Similar Questions

Explore conceptually related problems

f(x)=2x-tan^(-1)x-log(x+sqrt(1+x^(2)))(x>0) is increasing in

The function f (x) =1+ x ln (x+ sqrt(1+ x ^(2)))-sqrt(1- x^(2)) is:

If f(x)=2 x cot ^(-1)x + log (sqrt(1+x^2)-x then f(x)

f(x)=2x-tan^(-1)x-log{x+sqrt(x^(2)+1)} is monotonically increasing when (a) x>0 (b) x<0( c) x in R( d ) x in R-{0}

The value of int_(-1)^(1) ((logx+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(x) dx-int_(-1)^(1) (log(x sqrt(1+x^(2))))/(x+log(x+logsqrt(1+x^(2))))f(-x)dx ,

Show that f(x)=2x+cot^(-1)x+log(sqrt(1+x^(2))-x) is increasing in R

VK JAISWAL-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. f (x) =2x -tan ^(-1) x - ln (x+ sqrt(1+ x ^(2)))

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. int( (x^2+1)dx)/x

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. int( x^2+3)/(x^2+2)dx

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2+1)))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. int( x^3)/(x^2-3)dx

    Text Solution

    |

  14. If a continuous function f on [0,a] satisfies f(x)f(a-x)=1,agt0, then ...

    Text Solution

    |

  15. If {x} denotes the fractional part of x, then I = int (0) ^(100) (sqrt...

    Text Solution

    |

  16. int( x^3)/(x^2-2)dx

    Text Solution

    |

  17. IF M be the maximum valur of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  18. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  19. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  20. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  21. Given a funtion g, continous everywhere such that g (1)=5 and int (0)^...

    Text Solution

    |