Home
Class 12
MATHS
The value of the integral int (e ^(-1))^...

The value of the integral `int _(e ^(-1))^(e ^(2))|(ln x )/(x)|dx ` is:

A

`3/2`

B

`5/2`

C

`3/2`

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{e^{-1}}^{e^{2}} \left| \frac{\ln x}{x} \right| dx \), we can follow these steps: ### Step 1: Determine the behavior of \( \frac{\ln x}{x} \) First, we need to analyze the function \( \frac{\ln x}{x} \) to determine where it is positive or negative in the interval \( [e^{-1}, e^{2}] \). - At \( x = e^{-1} \): \[ \frac{\ln(e^{-1})}{e^{-1}} = \frac{-1}{\frac{1}{e}} = -e \] - At \( x = 1 \): \[ \frac{\ln(1)}{1} = 0 \] - At \( x = e^{2} \): \[ \frac{\ln(e^{2})}{e^{2}} = \frac{2}{e^{2}} \] The function \( \frac{\ln x}{x} \) is negative for \( x \in (e^{-1}, 1) \) and positive for \( x \in (1, e^{2}) \). ### Step 2: Rewrite the integral using the absolute value Since \( \frac{\ln x}{x} \) is negative from \( e^{-1} \) to \( 1 \) and positive from \( 1 \) to \( e^{2} \), we can express the integral as: \[ \int_{e^{-1}}^{e^{2}} \left| \frac{\ln x}{x} \right| dx = -\int_{e^{-1}}^{1} \frac{\ln x}{x} dx + \int_{1}^{e^{2}} \frac{\ln x}{x} dx \] ### Step 3: Change of variables Let \( t = \ln x \), then \( dx = e^t dt \) and \( x = e^t \). The limits change as follows: - When \( x = e^{-1} \), \( t = -1 \) - When \( x = 1 \), \( t = 0 \) - When \( x = e^{2} \), \( t = 2 \) Now, substituting these into the integral gives: \[ -\int_{-1}^{0} t \, dt + \int_{0}^{2} t \, dt \] ### Step 4: Evaluate the integrals 1. Evaluate \( -\int_{-1}^{0} t \, dt \): \[ -\left[ \frac{t^2}{2} \right]_{-1}^{0} = -\left(0 - \frac{(-1)^2}{2}\right) = -\left(-\frac{1}{2}\right) = \frac{1}{2} \] 2. Evaluate \( \int_{0}^{2} t \, dt \): \[ \left[ \frac{t^2}{2} \right]_{0}^{2} = \frac{2^2}{2} - 0 = 2 \] ### Step 5: Combine the results Now combine the results from the two integrals: \[ \frac{1}{2} + 2 = \frac{1}{2} + \frac{4}{2} = \frac{5}{2} \] ### Final Answer Thus, the value of the integral is: \[ \int_{e^{-1}}^{e^{2}} \left| \frac{\ln x}{x} \right| dx = \frac{5}{2} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|17 Videos
  • HYPERBOLA

    VK JAISWAL|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|6 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(e^(-1))^(e^(2)) |(log_(e)x)/(x)|dx is

The value of the integral int_(e^(-1))^(e^(2))|((log)_(e)x)/(x)|dx is (A) (3)/(2)(B)(5)/(2)(C)3(D)5

The value of the integral int_(1)^(2)e^(x)(log_(e)x+(x+1)/(x))dx is

The value of the integral int_(-a)^(a)(e^(x))/(1+e^(x))dx is

The value of the integral int(dx)/((e^(x)+e^(-x))^2) is

int_(1)^(e^(2))(ln x)/(sqrt(x))dx=

The value of the definite integral int_(1)^(e)((x+1)e^(x).ln x)dx is

The value of integral int_(1)^(e) (log x)^(3)dx , is

The value of the integral int_(-1)^(1)log_(e)(sqrt(1-x)+sqrt(1+x))dx is equal to :

VK JAISWAL-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. The value of the integral int (e ^(-1))^(e ^(2))|(ln x )/(x)|dx is:

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. int( (x^2+1)dx)/x

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. int( x^2+3)/(x^2+2)dx

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2+1)))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. int( x^3)/(x^2-3)dx

    Text Solution

    |

  14. If a continuous function f on [0,a] satisfies f(x)f(a-x)=1,agt0, then ...

    Text Solution

    |

  15. If {x} denotes the fractional part of x, then I = int (0) ^(100) (sqrt...

    Text Solution

    |

  16. int( x^3)/(x^2-2)dx

    Text Solution

    |

  17. IF M be the maximum valur of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  18. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  19. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  20. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  21. Given a funtion g, continous everywhere such that g (1)=5 and int (0)^...

    Text Solution

    |