Home
Class 12
MATHS
Let f (x) =(1)/(x ^(2)) int (4)^(x) (4t ...

Let `f (x) =(1)/(x ^(2)) int _(4)^(x) (4t ^(2) -2 f '(t) dt, ` find `9f'(4)`

A

16

B

4

C

8

D

32

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( 9f'(4) \) given the function: \[ f(x) = \frac{1}{x^2} \int_{4}^{x} (4t^2 - 2f'(t)) dt \] ### Step 1: Rewrite the function \( f(x) \) We start with the function: \[ f(x) = \frac{1}{x^2} \int_{4}^{x} (4t^2 - 2f'(t)) dt \] ### Step 2: Split the integral We can split the integral into two parts: \[ f(x) = \frac{1}{x^2} \left( \int_{4}^{x} 4t^2 dt - 2 \int_{4}^{x} f'(t) dt \right) \] ### Step 3: Evaluate the first integral The first integral can be evaluated as follows: \[ \int_{4}^{x} 4t^2 dt = \left[ \frac{4t^3}{3} \right]_{4}^{x} = \frac{4x^3}{3} - \frac{4 \cdot 4^3}{3} \] Calculating \( 4 \cdot 4^3 \): \[ 4 \cdot 4^3 = 4 \cdot 64 = 256 \] Thus, \[ \int_{4}^{x} 4t^2 dt = \frac{4x^3}{3} - \frac{256}{3} \] ### Step 4: Substitute back into \( f(x) \) Now substituting back into \( f(x) \): \[ f(x) = \frac{1}{x^2} \left( \frac{4x^3}{3} - \frac{256}{3} - 2 \int_{4}^{x} f'(t) dt \right) \] ### Step 5: Differentiate \( f(x) \) Next, we differentiate \( f(x) \) using the product rule: \[ f'(x) = \frac{d}{dx} \left( \frac{1}{x^2} \right) \left( \frac{4x^3}{3} - \frac{256}{3} - 2 \int_{4}^{x} f'(t) dt \right) + \frac{1}{x^2} \frac{d}{dx} \left( \frac{4x^3}{3} - \frac{256}{3} - 2 \int_{4}^{x} f'(t) dt \right) \] Calculating the derivative of \( \frac{1}{x^2} \): \[ \frac{d}{dx} \left( \frac{1}{x^2} \right) = -\frac{2}{x^3} \] ### Step 6: Evaluate \( f'(4) \) To find \( f'(4) \), we substitute \( x = 4 \) into the differentiated expression. However, we also know that: \[ f(4) = 0 \] This implies that the term involving \( f'(t) \) cancels out when evaluated at \( x = 4 \). ### Step 7: Solve for \( f'(4) \) From the earlier steps, we can set up the equation for \( f'(4) \): \[ f'(4) + \frac{1}{8} f'(4) = 4 \] This simplifies to: \[ \frac{9}{8} f'(4) = 4 \] ### Step 8: Isolate \( f'(4) \) Now, solving for \( f'(4) \): \[ f'(4) = 4 \cdot \frac{8}{9} = \frac{32}{9} \] ### Step 9: Calculate \( 9f'(4) \) Finally, we calculate: \[ 9f'(4) = 9 \cdot \frac{32}{9} = 32 \] Thus, the final answer is: \[ \boxed{32} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|17 Videos
  • HYPERBOLA

    VK JAISWAL|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|6 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(1)/(x^(2))int_(4)^(x)(4t^(2)-2f'(t)) dt,then f'(4) is equal to:

If F(x) =(1)/(x^(2))int_(4)^(x) [4t^(2)-2F'(t)]dt then F'(4) equals

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

If int_(0)^(x)f(t)dt = x^(2)-int_(0)^(x^(2))(f(t))/(t)dt then find f(1) .

If int_(0)^(x^(2)(1+x))f(t)dt = x then find f(2)

Let F:[3,5] rarr R be a twice differentiable function on (3,5) such that F(x)= e^(-x) int_(3)^(x) (3t^(2)+2t+4F'(t)) dt . If F'(4)= (alpha e^(beta)-224)/((e^(beta)-4)^(2)) , then alpha+beta is equal to _____

Let f:RtoR be a differntiable function satisfying f(x)=x^(2)+3int_(0)^(x)e^(-t^(3)).f(x-t^(3))dt . Then find f(x) .

VK JAISWAL-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Let f (x) =(1)/(x ^(2)) int (4)^(x) (4t ^(2) -2 f '(t) dt, find 9f'(4...

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. int( (x^2+1)dx)/x

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. int( x^2+3)/(x^2+2)dx

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2+1)))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. int( x^3)/(x^2-3)dx

    Text Solution

    |

  14. If a continuous function f on [0,a] satisfies f(x)f(a-x)=1,agt0, then ...

    Text Solution

    |

  15. If {x} denotes the fractional part of x, then I = int (0) ^(100) (sqrt...

    Text Solution

    |

  16. int( x^3)/(x^2-2)dx

    Text Solution

    |

  17. IF M be the maximum valur of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  18. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  19. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  20. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  21. Given a funtion g, continous everywhere such that g (1)=5 and int (0)^...

    Text Solution

    |