Home
Class 12
MATHS
The value of lim ( x to 0^(+))(int (1)^(...

The value of `lim _( x to 0^(+))(int _(1)^(cos x) (cos ^(-1) t )dt)/(2x - sin 2x)` is equal to:

A

0

B

`-1`

C

`2/3`

D

`(-1)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to 0^{+}} \frac{\int_{1}^{\cos x} \cos^{-1} t \, dt}{2x - \sin 2x}, \] we will follow these steps: ### Step 1: Evaluate the limit directly First, we substitute \(x = 0\) into the limit: \[ \int_{1}^{\cos(0)} \cos^{-1} t \, dt = \int_{1}^{1} \cos^{-1} t \, dt = 0, \] and \[ 2(0) - \sin(2 \cdot 0) = 0 - 0 = 0. \] This gives us the indeterminate form \( \frac{0}{0} \). ### Step 2: Apply L'Hôpital's Rule Since we have the form \( \frac{0}{0} \), we can apply L'Hôpital's Rule. We differentiate the numerator and denominator separately. #### Numerator: Using the Fundamental Theorem of Calculus, we differentiate the numerator: \[ \frac{d}{dx} \left( \int_{1}^{\cos x} \cos^{-1} t \, dt \right) = \cos^{-1}(\cos x) \cdot (-\sin x) = x \cdot (-\sin x). \] #### Denominator: Now we differentiate the denominator: \[ \frac{d}{dx}(2x - \sin 2x) = 2 - 2\cos(2x). \] ### Step 3: Rewrite the limit Now we rewrite the limit using the derivatives we found: \[ \lim_{x \to 0^{+}} \frac{-x \sin x}{2 - 2\cos(2x)}. \] ### Step 4: Substitute \(x = 0\) again Substituting \(x = 0\) again gives us: \[ \text{Numerator: } -0 \cdot \sin(0) = 0, \] and \[ \text{Denominator: } 2 - 2\cos(0) = 2 - 2 = 0. \] Again, we have the indeterminate form \( \frac{0}{0} \). ### Step 5: Apply L'Hôpital's Rule again We apply L'Hôpital's Rule again. #### New Numerator: Differentiating the numerator again gives: \[ \frac{d}{dx}(-x \sin x) = -\sin x - x \cos x. \] #### New Denominator: Differentiating the denominator gives: \[ \frac{d}{dx}(2 - 2\cos(2x)) = 0 + 4\sin(2x). \] ### Step 6: Rewrite the limit again Now we have: \[ \lim_{x \to 0^{+}} \frac{-\sin x - x \cos x}{4 \sin(2x)}. \] ### Step 7: Substitute \(x = 0\) once more Substituting \(x = 0\): \[ \text{Numerator: } -\sin(0) - 0 \cdot \cos(0) = 0, \] and \[ \text{Denominator: } 4 \sin(0) = 0. \] We still have \( \frac{0}{0} \). ### Step 8: Apply L'Hôpital's Rule a third time We apply L'Hôpital's Rule again. #### New Numerator: Differentiating gives: \[ \frac{d}{dx}(-\sin x - x \cos x) = -\cos x - (\cos x - x \sin x) = -2\cos x + x \sin x. \] #### New Denominator: Differentiating gives: \[ \frac{d}{dx}(4\sin(2x)) = 8\cos(2x). \] ### Step 9: Rewrite the limit again Now we have: \[ \lim_{x \to 0^{+}} \frac{-2\cos x + x \sin x}{8\cos(2x)}. \] ### Step 10: Substitute \(x = 0\) one last time Substituting \(x = 0\): \[ \text{Numerator: } -2\cos(0) + 0 \cdot \sin(0) = -2, \] and \[ \text{Denominator: } 8\cos(0) = 8. \] ### Final Result Thus, we find: \[ \lim_{x \to 0^{+}} \frac{-2}{8} = -\frac{1}{4}. \] So, the value of the limit is \[ \boxed{-\frac{1}{4}}. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|17 Videos
  • HYPERBOLA

    VK JAISWAL|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|6 Videos

Similar Questions

Explore conceptually related problems

lim_(x to 0) (2 int_(0)^(cosx) cos^(-1) t dt)/( 2x -sin 2x) is equal to

The value of lim_(x rarr0^(+))(int_(1)^(cos x)(cos^(-1)t)dt)/(2x-sin(2x)) is equal to

The value of lim_(x rarr0)(2int_(0)^(cos x ) cos^(-1) (t))/(2x- sin 2 x)dx is

The value of lim_( x to 0) (int_(0)^(x) sin t^(2) dt) / x^(2) is

The value of lim_(xto1^(+))(int_(1)^(x)|t-1|dt)/(sin(x-1)) is

The value of lim_(x to - pi) (int_(0)^(sin x)sin^(-1)t dt)/((x+pi)^(2)) is equal to L then find the value of 100 L :

lim_( x to 0) ( int_(0)^(x^(2)) cos^(2)t" "dt)/(x sin x) = ...

int _(0)^(pi//2) (cos x - sin x)/(1+cos x sin x)dx is equal to

lim_(x to 0)(int_(0)^(x^(2))(tan^(-1)t)dt)/(int_(0)^(x^(2))sin sqrt(t)dt) is equal to :

lim_(x to 0) ((1-cos 2x)(3+cos x))/(x tan 4x) is equal to

VK JAISWAL-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. The value of lim ( x to 0^(+))(int (1)^(cos x) (cos ^(-1) t )dt)/(2x -...

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. int( (x^2+1)dx)/x

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. int( x^2+3)/(x^2+2)dx

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2+1)))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. int( x^3)/(x^2-3)dx

    Text Solution

    |

  14. If a continuous function f on [0,a] satisfies f(x)f(a-x)=1,agt0, then ...

    Text Solution

    |

  15. If {x} denotes the fractional part of x, then I = int (0) ^(100) (sqrt...

    Text Solution

    |

  16. int( x^3)/(x^2-2)dx

    Text Solution

    |

  17. IF M be the maximum valur of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  18. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  19. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  20. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  21. Given a funtion g, continous everywhere such that g (1)=5 and int (0)^...

    Text Solution

    |