Home
Class 12
MATHS
Consider the function f (x) and g (x), b...

Consider the function `f (x) and g (x),` both defined from `R to R`
`f (x) = (x ^(3))/(2 )+1 -x int _(0)^(x) g (t) dt and g (x) =x - int _(0) ^(1) f (t) dt, ` then
The number of points of intersection of `f (x) and g (x)` is/are:

A

0

B

1

C

2

D

3

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|5 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|29 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • HYPERBOLA

    VK JAISWAL|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|6 Videos

Similar Questions

Explore conceptually related problems

Consider the function f (x) and g (x), both defined from R to R f (x) = (x ^(3))/(2 )+1 -x int _(0)^(x) g (t) dt and g (x) =x - int _(0) ^(1) f (t) dt, then minimum value of f (x) is:

If int_(0) ^(x) f (t) dt = x + int _(x ) ^(1) t f (t) dt, then the value of f (1) , is

f(x)=x^(3)+1-2x int_(0)^(x)g(t)dt and g(x)=x-int_(0)^(1)f(t)dt. Then yhe value of int_(0)^(1)f(t)dt lies in the interval

If int_(0)^(x) f(t)dt=x+int_(x)^(1) t f(t) dt , then the value of f(1), is

If f(x)=1+3int_(0)^(x)t^(2)f(t)dt, then the number of solution of f(x)=x^(2)+1 is

f(x) : [0, 5] → R, F(x) = int_(0)^(x) x^2 g(x) , f(1) = 3 g(x) = int_(1)^(x) f(t) dt then correct choice is

If int_(0)^(x)f(t)dt = x^(2)-int_(0)^(x^(2))(f(t))/(t)dt then find f(1) .

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

VK JAISWAL-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (COMPREHENSION TYPE PROBLEMS)
  1. Let f (x) = int x ^(2) cos ^(2)x (2x + 6 tan x - 2x tan ^(2) x ) dx an...

    Text Solution

    |

  2. Let f (x) = int x ^(2) cos ^(2)x (2x + 6 tan x - 2x tan ^(2) x ) dx an...

    Text Solution

    |

  3. Let f(x) be a non-constant twice differentiable function defined on (o...

    Text Solution

    |

  4. Let f (x) be a twice differentiable function defined on (-oo,oo) such ...

    Text Solution

    |

  5. Let f(x) be a non-constant twice differentiable function defined on (-...

    Text Solution

    |

  6. Consider the function f (x) and g (x), both defined from R to R f (x...

    Text Solution

    |

  7. Consider the function f (x) and g (x), both defined from R to R f (x...

    Text Solution

    |

  8. Consider the function f (x) and g (x), both defined from R to R f (x...

    Text Solution

    |

  9. Let f (x) be function defined on [0,1] such that f (1)=0 and for any ...

    Text Solution

    |

  10. Let f (x) be function defined on [0,1] such that f (1)=0 and for any ...

    Text Solution

    |

  11. Let f (x) be function defined on [0,1] such that f (1)=0 and for any ...

    Text Solution

    |

  12. Let f (a)(x) =In x and for n ge 0 and x gt 0 Let f (a)(x) = int (0)...

    Text Solution

    |

  13. int( x^2+4)/(x^2+1)dx

    Text Solution

    |

  14. Let f :R to [(3)/(4), oo) be a surjective quadratic function with line...

    Text Solution

    |

  15. Let f :R to [(3)/(4), oo) be a surjective quadratic function with line...

    Text Solution

    |

  16. Let g (x ) = x ^(C )e ^(Cx) and f (x) = int (0)^(x) te ^(2r) (1+3t ^(2...

    Text Solution

    |

  17. Let g (x ) = x ^(C )e ^(Cx) and f (x) = int (0)^(x) te ^(2t) (1+3t ^(2...

    Text Solution

    |