Home
Class 12
MATHS
Let g (x ) = x ^(C )e ^(Cx) and f (x) = ...

Let `g (x ) = x ^(C )e ^(Cx) and f (x) = int _(0)^(x) te ^(2r) (1+3t ^(2))^(1//2) dt. If L = lim _(x to oo) (f'(x ))/(g '(x))` is non-zero finite number then :
The valur of C is:

A

7

B

`3/2`

C

`2`

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step-by-step, we will find the value of \( C \) such that the limit \( L = \lim_{x \to \infty} \frac{f'(x)}{g'(x)} \) is a non-zero finite number. ### Step 1: Define the functions We have: - \( g(x) = x^C e^{Cx} \) - \( f(x) = \int_0^x t e^{2t} (1 + 3t^2)^{1/2} dt \) ### Step 2: Find \( g'(x) \) Using the product rule: \[ g'(x) = \frac{d}{dx}(x^C) \cdot e^{Cx} + x^C \cdot \frac{d}{dx}(e^{Cx}) \] Calculating the derivatives: \[ g'(x) = C x^{C-1} e^{Cx} + x^C \cdot C e^{Cx} = C e^{Cx} (x^{C-1} + x^C) = C e^{Cx} x^{C-1} (1 + x) \] ### Step 3: Find \( f'(x) \) Using the Leibniz rule for differentiation under the integral sign: \[ f'(x) = x e^{2x} (1 + 3x^2)^{1/2} \] ### Step 4: Set up the limit Now we need to evaluate: \[ L = \lim_{x \to \infty} \frac{f'(x)}{g'(x)} = \lim_{x \to \infty} \frac{x e^{2x} (1 + 3x^2)^{1/2}}{C e^{Cx} x^{C-1} (1 + x)} \] ### Step 5: Simplify the limit We can simplify the expression: \[ L = \lim_{x \to \infty} \frac{x e^{2x} (1 + 3x^2)^{1/2}}{C e^{Cx} x^{C-1} (1 + x)} = \lim_{x \to \infty} \frac{(1 + 3x^2)^{1/2}}{C x^{C-2} (1 + x)} e^{(2 - C)x} \] ### Step 6: Analyze the limit For \( L \) to be a non-zero finite number as \( x \to \infty \): 1. The exponential term \( e^{(2 - C)x} \) must not diverge to infinity or vanish to zero. 2. This implies \( 2 - C = 0 \) or \( C = 2 \). ### Conclusion Thus, the value of \( C \) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|5 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|29 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • HYPERBOLA

    VK JAISWAL|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|6 Videos

Similar Questions

Explore conceptually related problems

Let g (x ) = x ^(C )e ^(Cx) and f (x) = int _(0)^(x) te ^(2t) (1+3t ^(2))^(1//2) dt. If L = lim _(x to oo) (f'(x ))/(g '(x)) is non-zero finite number then : The value of L . Is :

g(x),=x^(c)e^(cx) and f(x)=int_(0)^(x)te^(2t)(1+3t^(2))^((1)/(2))dt* if L,=lim_(x rarr oo)(f'(x))/(g'(x)) is non-zero finit number then :,

If f(x)=int(tan^(3)x-x tan^(2)x)dx Where f(0)=0 and lim_(x rarr0)(f(x))/(x^(m)) is non-zero finite then m=

Let f:(0, oo) in R and F(x) = int_(0)^(x) f(t) dt . If F(x^(2))=x^(2)(1+x) then f (4) equals

If f(x)=e^(g(x)) and g(x)=int_(2)^(x)(dt)/(1+t^(4)) then f'(2) is equal to

Let f(x)=int_(x^(2))^(x^(3)) for x>1 and g(x)=int_(1)^(x)(2t^(2)-Int)f(t)dt(x<1) then

VK JAISWAL-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (COMPREHENSION TYPE PROBLEMS)
  1. Let f (x) = int x ^(2) cos ^(2)x (2x + 6 tan x - 2x tan ^(2) x ) dx an...

    Text Solution

    |

  2. Let f (x) = int x ^(2) cos ^(2)x (2x + 6 tan x - 2x tan ^(2) x ) dx an...

    Text Solution

    |

  3. Let f(x) be a non-constant twice differentiable function defined on (o...

    Text Solution

    |

  4. Let f (x) be a twice differentiable function defined on (-oo,oo) such ...

    Text Solution

    |

  5. Let f(x) be a non-constant twice differentiable function defined on (-...

    Text Solution

    |

  6. Consider the function f (x) and g (x), both defined from R to R f (x...

    Text Solution

    |

  7. Consider the function f (x) and g (x), both defined from R to R f (x...

    Text Solution

    |

  8. Consider the function f (x) and g (x), both defined from R to R f (x...

    Text Solution

    |

  9. Let f (x) be function defined on [0,1] such that f (1)=0 and for any ...

    Text Solution

    |

  10. Let f (x) be function defined on [0,1] such that f (1)=0 and for any ...

    Text Solution

    |

  11. Let f (x) be function defined on [0,1] such that f (1)=0 and for any ...

    Text Solution

    |

  12. Let f (a)(x) =In x and for n ge 0 and x gt 0 Let f (a)(x) = int (0)...

    Text Solution

    |

  13. int( x^2+4)/(x^2+1)dx

    Text Solution

    |

  14. Let f :R to [(3)/(4), oo) be a surjective quadratic function with line...

    Text Solution

    |

  15. Let f :R to [(3)/(4), oo) be a surjective quadratic function with line...

    Text Solution

    |

  16. Let g (x ) = x ^(C )e ^(Cx) and f (x) = int (0)^(x) te ^(2r) (1+3t ^(2...

    Text Solution

    |

  17. Let g (x ) = x ^(C )e ^(Cx) and f (x) = int (0)^(x) te ^(2t) (1+3t ^(2...

    Text Solution

    |