Home
Class 12
MATHS
Let g (x ) = x ^(C )e ^(Cx) and f (x) = ...

Let `g (x ) = x ^(C )e ^(Cx) and f (x) = int _(0)^(x) te ^(2t) (1+3t ^(2))^(1//2) dt.` If `L = lim _(x to oo) (f'(x ))/(g '(x))` is non-zero finite number then :
The value of L . Is :

A

`2/7`

B

`1/2`

C

`(sqrt3)/(4)`

D

`(sqrt3)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limit \( L = \lim_{x \to \infty} \frac{f'(x)}{g'(x)} \) where \( g(x) = x^c e^{Cx} \) and \( f(x) = \int_0^x t e^{2t} (1 + 3t^2)^{1/2} dt \). ### Step 1: Find \( g'(x) \) Given: \[ g(x) = x^c e^{Cx} \] Using the product rule: \[ g'(x) = \frac{d}{dx}(x^c) \cdot e^{Cx} + x^c \cdot \frac{d}{dx}(e^{Cx}) \] \[ = c x^{c-1} e^{Cx} + x^c \cdot C e^{Cx} \] \[ = e^{Cx} \left( c x^{c-1} + C x^c \right) \] \[ = e^{Cx} x^{c-1} (c + Cx) \] ### Step 2: Find \( f'(x) \) Using Leibniz's rule for differentiation under the integral sign: \[ f'(x) = \frac{d}{dx} \int_0^x t e^{2t} (1 + 3t^2)^{1/2} dt = x e^{2x} (1 + 3x^2)^{1/2} \] ### Step 3: Set up the limit \( L \) Now we can express \( L \): \[ L = \lim_{x \to \infty} \frac{f'(x)}{g'(x)} = \lim_{x \to \infty} \frac{x e^{2x} (1 + 3x^2)^{1/2}}{e^{Cx} x^{c-1} (c + Cx)} \] ### Step 4: Simplify the limit We can simplify this limit: \[ L = \lim_{x \to \infty} \frac{x e^{2x} (1 + 3x^2)^{1/2}}{e^{Cx} x^{c-1} (c + Cx)} = \lim_{x \to \infty} \frac{(1 + 3x^2)^{1/2}}{x^{c-2} (c + Cx) e^{(C-2)x}} \] ### Step 5: Analyze the limit For \( L \) to be a non-zero finite number, we need to balance the powers of \( x \) and the exponential terms. This leads to: \[ C - 2 = 0 \quad \Rightarrow \quad C = 2 \] \[ c - 2 = 0 \quad \Rightarrow \quad c = 2 \] ### Step 6: Substitute \( C \) and \( c \) Substituting \( C = 2 \) and \( c = 2 \) into the limit: \[ L = \lim_{x \to \infty} \frac{(1 + 3x^2)^{1/2}}{x^0 (2 + 2x) e^{0}} = \lim_{x \to \infty} \frac{(1 + 3x^2)^{1/2}}{2 + 2x} \] ### Step 7: Evaluate the limit As \( x \to \infty \): \[ L = \lim_{x \to \infty} \frac{\sqrt{3} x}{2x} = \frac{\sqrt{3}}{2} \] Thus, the value of \( L \) is: \[ \boxed{\frac{\sqrt{3}}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|5 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|29 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • HYPERBOLA

    VK JAISWAL|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|6 Videos

Similar Questions

Explore conceptually related problems

Let g (x ) = x ^(C )e ^(Cx) and f (x) = int _(0)^(x) te ^(2r) (1+3t ^(2))^(1//2) dt. If L = lim _(x to oo) (f'(x ))/(g '(x)) is non-zero finite number then : The valur of C is:

g(x),=x^(c)e^(cx) and f(x)=int_(0)^(x)te^(2t)(1+3t^(2))^((1)/(2))dt* if L,=lim_(x rarr oo)(f'(x))/(g'(x)) is non-zero finit number then :,

If f(x) = int_(0)^(x) e^(t^(2)) (t-2) (t-3) dt for all x in (0, oo) , then

Let f(x)=int_(x^(2))^(x^(3)) for x>1 and g(x)=int_(1)^(x)(2t^(2)-Int)f(t)dt(x<1) then

If f(x)=e^(g(x)) and g(x)=int_(2)^(x)(dt)/(1+t^(4)) then f'(2) is equal to

Let f:(0, oo) in R and F(x) = int_(0)^(x) f(t) dt . If F(x^(2))=x^(2)(1+x) then f (4) equals

Let f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt. Then, f decreases in the interval

VK JAISWAL-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (COMPREHENSION TYPE PROBLEMS)
  1. Let f (x) = int x ^(2) cos ^(2)x (2x + 6 tan x - 2x tan ^(2) x ) dx an...

    Text Solution

    |

  2. Let f (x) = int x ^(2) cos ^(2)x (2x + 6 tan x - 2x tan ^(2) x ) dx an...

    Text Solution

    |

  3. Let f(x) be a non-constant twice differentiable function defined on (o...

    Text Solution

    |

  4. Let f (x) be a twice differentiable function defined on (-oo,oo) such ...

    Text Solution

    |

  5. Let f(x) be a non-constant twice differentiable function defined on (-...

    Text Solution

    |

  6. Consider the function f (x) and g (x), both defined from R to R f (x...

    Text Solution

    |

  7. Consider the function f (x) and g (x), both defined from R to R f (x...

    Text Solution

    |

  8. Consider the function f (x) and g (x), both defined from R to R f (x...

    Text Solution

    |

  9. Let f (x) be function defined on [0,1] such that f (1)=0 and for any ...

    Text Solution

    |

  10. Let f (x) be function defined on [0,1] such that f (1)=0 and for any ...

    Text Solution

    |

  11. Let f (x) be function defined on [0,1] such that f (1)=0 and for any ...

    Text Solution

    |

  12. Let f (a)(x) =In x and for n ge 0 and x gt 0 Let f (a)(x) = int (0)...

    Text Solution

    |

  13. int( x^2+4)/(x^2+1)dx

    Text Solution

    |

  14. Let f :R to [(3)/(4), oo) be a surjective quadratic function with line...

    Text Solution

    |

  15. Let f :R to [(3)/(4), oo) be a surjective quadratic function with line...

    Text Solution

    |

  16. Let g (x ) = x ^(C )e ^(Cx) and f (x) = int (0)^(x) te ^(2r) (1+3t ^(2...

    Text Solution

    |

  17. Let g (x ) = x ^(C )e ^(Cx) and f (x) = int (0)^(x) te ^(2t) (1+3t ^(2...

    Text Solution

    |