Home
Class 12
MATHS
If int (0)^(2)(3x ^(2) -3x +1) cos (x ^(...

If `int _(0)^(2)(3x ^(2) -3x +1) cos (x ^(3) -3x ^(2)+4x -2) dx = a sin (b),` where a and b are positive integers. Find the value of `(a+b).`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{2} (3x^2 - 3x + 1) \cos(x^3 - 3x^2 + 4x - 2) \, dx, \] we can use the property of definite integrals that states: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx. \] In our case, \( a = 0 \) and \( b = 2 \). Thus, we have: \[ I = \int_{0}^{2} (3(2-x)^2 - 3(2-x) + 1) \cos((2-x)^3 - 3(2-x)^2 + 4(2-x) - 2) \, dx. \] Now, we simplify the expression \( 3(2-x)^2 - 3(2-x) + 1 \): 1. Calculate \( (2-x)^2 \): \[ (2-x)^2 = 4 - 4x + x^2. \] Thus, \[ 3(2-x)^2 = 3(4 - 4x + x^2) = 12 - 12x + 3x^2. \] 2. Calculate \( -3(2-x) \): \[ -3(2-x) = -6 + 3x. \] 3. Combine these results: \[ 3(2-x)^2 - 3(2-x) + 1 = (12 - 12x + 3x^2) + (-6 + 3x) + 1 = 3x^2 - 9x + 7. \] Next, we simplify the argument of the cosine function: 1. Calculate \( (2-x)^3 \): \[ (2-x)^3 = 8 - 12x + 6x^2 - x^3. \] 2. Calculate \( -3(2-x)^2 \): \[ -3(2-x)^2 = -3(4 - 4x + x^2) = -12 + 12x - 3x^2. \] 3. Calculate \( 4(2-x) \): \[ 4(2-x) = 8 - 4x. \] 4. Combine these results: \[ (2-x)^3 - 3(2-x)^2 + 4(2-x) - 2 = (8 - 12x + 6x^2 - x^3) + (-12 + 12x - 3x^2) + (8 - 4x) - 2. \] Simplifying this gives: \[ -x^3 + 3x^2 - 4x + 2. \] Now, we can express the integral \( I \) as: \[ I = \int_{0}^{2} (3x^2 - 3x + 1) \cos(x^3 - 3x^2 + 4x - 2) \, dx + \int_{0}^{2} (3x^2 - 9x + 7) \cos(-x^3 + 3x^2 - 4x + 2) \, dx. \] This leads to: \[ 2I = \int_{0}^{2} \left[ (3x^2 - 3x + 1) + (3x^2 - 9x + 7) \right] \cos(x^3 - 3x^2 + 4x - 2) \, dx. \] Combining the terms gives: \[ 2I = \int_{0}^{2} (6x^2 - 12x + 8) \cos(x^3 - 3x^2 + 4x - 2) \, dx. \] Now, we can factor out the constant: \[ 2I = 2 \int_{0}^{2} (3x^2 - 6x + 4) \cos(x^3 - 3x^2 + 4x - 2) \, dx. \] Thus, we have: \[ I = \int_{0}^{2} (3x^2 - 6x + 4) \cos(x^3 - 3x^2 + 4x - 2) \, dx. \] Next, we perform a substitution. Let: \[ t = x^3 - 3x^2 + 4x - 2. \] Then, we find \( dt \): \[ dt = (3x^2 - 6x + 4) \, dx. \] Now we need to evaluate the limits when \( x = 0 \) and \( x = 2 \): - When \( x = 0 \): \[ t = 0^3 - 3(0)^2 + 4(0) - 2 = -2. \] - When \( x = 2 \): \[ t = 2^3 - 3(2^2) + 4(2) - 2 = 8 - 12 + 8 - 2 = 2. \] Thus, the integral becomes: \[ I = \int_{-2}^{2} \cos(t) \, dt. \] Now, we evaluate this integral: \[ I = \left[ \sin(t) \right]_{-2}^{2} = \sin(2) - \sin(-2) = \sin(2) + \sin(2) = 2\sin(2). \] Thus, we have: \[ I = 2 \sin(2). \] From the problem statement, we have \( I = a \sin(b) \) where \( a = 2 \) and \( b = 2 \). Finally, we find \( a + b \): \[ a + b = 2 + 2 = 4. \] Therefore, the answer is: \[ \boxed{4}. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|5 Videos
  • HYPERBOLA

    VK JAISWAL|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|6 Videos

Similar Questions

Explore conceptually related problems

If int _(0)^(2)(3x ^(2) -3x +1) cos (x ^(2) -3x ^(2)+4x -2) dx = a sin (b), where a and b are positive integers. Find the value of (a+b)/2.

I=int_(0)^(2)(3x^(2)-3x+1)cos(x^(3)-3x^(2)+4x-2)dx

int_(1)^(e)(x^(4)ln x+2)/(x^(3)ln x+x)dx=(e^(2)+a)/(b)-ln(e^(2)+1) where a and b are positive integers then (a)/(b)=

int_(0)^( pi)sqrt((cos x+cos2x+cos3x)^(2)+(sin x+sin2x+sin3x)^(2))dx is equal to ((pi)/(k)+w), where k and w are positive integers,find the value of (k^(2)+w^(2))

If sin(30^(@) + " arc " tan x) = 13/14 " and " 0 lt x lt 1" , the value of x is " (a sqrt3)/b , where a and b are positive integers with no common factors . Find the value of ((a+b)/2) .

If int _(a)^(b) x^(3) dx = 0 and if int _(a)^(b) x^(2) dx = 2/3 , then the values of a and b respectively are

Find I=int_(0)^((3 pi)/(2))cos^(4)(3x)sin^(2)(6x)dx

If int_(a)^(b)x^(3) dx = 0 and int_(a)^(b) x^(2) dx = 2/3 then what are the values of a and b respectively ?

The value of int _(0)^(pi//2)(sin ^(2)x-cos ^(2)x)/(sin ^(3)x+cos^(3)x)dx is

VK JAISWAL-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  2. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  3. int( x^3)/(x^2-3)dx

    Text Solution

    |

  4. If a continuous function f on [0,a] satisfies f(x)f(a-x)=1,agt0, then ...

    Text Solution

    |

  5. If {x} denotes the fractional part of x, then I = int (0) ^(100) (sqrt...

    Text Solution

    |

  6. int( x^3)/(x^2-2)dx

    Text Solution

    |

  7. IF M be the maximum valur of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  8. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  9. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  10. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  11. Given a funtion g, continous everywhere such that g (1)=5 and int (0)^...

    Text Solution

    |

  12. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  13. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |

  14. Let l (n) =int (-1) ^(1) |x|(1+ x+ (x ^(2))/(2 ) +(x ^(2))/(3) + ........

    Text Solution

    |

  15. int sqrt (x^2+4) dx

    Text Solution

    |

  16. If int (a )^(b) |sin x |dx =8 and int (0)^(1+b) |cos x| dx=9 then the ...

    Text Solution

    |

  17. If f(x),g(x),h(x) and phi(x) are polynomial in x, (int1^x f(x) h(x) dx...

    Text Solution

    |

  18. If int (0)^(2)(3x ^(2) -3x +1) cos (x ^(3) -3x ^(2)+4x -2) dx = a sin ...

    Text Solution

    |

  19. let f (x) = int (0) ^(x) e ^(x-y) f'(y) dy - (x ^(2) -x+1)e ^(x) Fin...

    Text Solution

    |

  20. For a positive integer n, let I (n) int (-pi)^(pi) ((pi)/(2) -|x|) cos...

    Text Solution

    |