Home
Class 12
MATHS
If omega is a complex nth root of unity,...

If `omega` is a complex nth root of unity, then `sum_(r=1)^n(a+b)omega^(r-1)` is equal to `(n(n+1)a)/2` b. `(n b)/(1+n)` c. `(n a)/(omega-1)` d. none of these

A

`(n(n+1)a)/(2omega)`

B

`(nb)/(1-n)`

C

`(na)/(omega-1)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VK JAISWAL|Exercise EXERCISE-2 : ONE OR MORE THAN ONE ANSWER IS / ARE CORRECT|10 Videos
  • COMPLEX NUMBERS

    VK JAISWAL|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|9 Videos
  • CIRCLE

    VK JAISWAL|Exercise Exercise - 5 : Subjective Type Problems|13 Videos
  • COMPOUND ANGLES

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|31 Videos

Similar Questions

Explore conceptually related problems

If omega is a complex nth root of unity,then sum_(r=1)^(n)(a+b)omega^(r-1) is equal to (n(n+1)a)/(2) b.(nb)/(1+n) c.(na)/(omega-1) d.none of these

If a+b=1, then sum_(n=0)^(n)C(n,r)a^(r)b^(n-r) is equal to '

If omega be a nth root of unity, then 1+omega+omega^2+…..+omega^(n-1) is (a)0(B) 1 (C) -1 (D) 2

If omega is a complex cube root of unity then x_(n)=omega^(n)+(1)/(omega^(n)) then x_(1)x_(2)x_(3),............,x_(12)=

If omega is a complex cube root of unity then the value of (1+omega)(1+omega^(2))(1+omega^(4)).......2n terms-

If omega is a complex cube root of unity, then ((1+i)^(2n)-(1-i)^(2n))/((1+omega^(4)-omega^(2))(1-omega^(4)+omega^(2)) is equal to

If omega(!=1) is a cube root of unity,then the sum of the series S=1+2 omega+3 omega^(2)+....+3n omega^(3n-1) is

The value of sum_(r=1)^(n)(-1)^(r+1)(^nCr)/(r+1) is equal to a.-(1)/(n+1) b.(1)/(n) c.(1)/(n+1) d.(n)/(n+1)

The value of sum_(r=1)^(n+1)(sum_(k=1)^(k)C_(r-1))( where r,k,n in N) is equal to a.2^(n+1)-2b2^(n+1)-1c.2^(n+1)d. none of these

If 1, omega, omega^2 ,…..,omega^(n-1) are the nth roots of unity, then (2- omega)(2-omega^2)….(2-omega^(n-1) ) equals