Home
Class 12
MATHS
If |z1|=1, |z2|=2, |z3|=3 and |9z1z2 + 4...

If `|z_1|=1, |z_2|=2, |z_3|=3` and `|9z_1z_2 + 4z_1z_3 + z_2z_3|=36`, then `|z_1+z_2+z_3|` is equal to :

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will use the properties of complex numbers and their moduli. ### Given: - \( |z_1| = 1 \) - \( |z_2| = 2 \) - \( |z_3| = 3 \) - \( |9z_1z_2 + 4z_1z_3 + z_2z_3| = 36 \) ### Step 1: Rewrite the modulus equation We start with the equation: \[ |9z_1z_2 + 4z_1z_3 + z_2z_3| = 36 \] ### Step 2: Substitute the moduli Using the properties of moduli, we can express the terms: - \( |z_1|^2 = 1^2 = 1 \) - \( |z_2|^2 = 2^2 = 4 \) - \( |z_3|^2 = 3^2 = 9 \) Now, rewrite the equation: \[ |9|z_1||z_2| + 4|z_1||z_3| + |z_2||z_3| = |9 \cdot 1 \cdot 2 + 4 \cdot 1 \cdot 3 + 2 \cdot 3| \] This simplifies to: \[ |18 + 12 + 6| = |36| \] ### Step 3: Factor out the moduli Now we can factor out the moduli: \[ |z_1 z_2 z_3| = |z_1| \cdot |z_2| \cdot |z_3| = 1 \cdot 2 \cdot 3 = 6 \] ### Step 4: Use the property of moduli We know that: \[ |z_1 z_2 z_3| \cdot |z_1^* + z_2^* + z_3^*| = 36 \] Where \( z_i^* \) denotes the conjugate of \( z_i \). ### Step 5: Solve for the sum of moduli Substituting the known modulus: \[ 6 \cdot |z_1^* + z_2^* + z_3^*| = 36 \] Dividing both sides by 6 gives: \[ |z_1^* + z_2^* + z_3^*| = 6 \] ### Step 6: Final result Since \( |z_1 + z_2 + z_3| = |z_1^* + z_2^* + z_3^*| \), we conclude that: \[ |z_1 + z_2 + z_3| = 6 \] ### Final Answer: \[ |z_1 + z_2 + z_3| = 6 \] ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VK JAISWAL|Exercise EXERCISE-4:MATCHING TYPE PROBLEMS|3 Videos
  • CIRCLE

    VK JAISWAL|Exercise Exercise - 5 : Subjective Type Problems|13 Videos
  • COMPOUND ANGLES

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|31 Videos

Similar Questions

Explore conceptually related problems

If |z_1|=1, |z_2| = 2, |z_3|=3 and |9z_1 z_2 + 4z_1 z_3+ z_2 z_3|=12 , then the value of |z_1 + z_2+ z_3| is equal to

If |z_(1)|=1,|z_(2)|=2,|z_(3)|=3 and |9z_(1)z_(2)+4z_(1)z_(2)+z_(2)z_(3)|=12, then |z_(1)+z_(2)+z_(3)| is equal to

If |z_1=1,|z_2|=2,|z_3|=3 and |z_1+z_2+z_3|=1, then |9z_1z_2+4z_3z_1+z_2z_3| is equal to (A) 3 (B) 36 (C) 216 (D) 1296

If |z_(1)|=1,|z_(2)|=2,|z_(3)|=3, and |9z_(1)z_(2)+4z_(1)z_(3)+z_(2)z_(3)|=12 then find the value of |z_(1)+z_(2)+z_(3)|

If |z_1|=2, |z_2|=3, |z_3|=4 and |2z_1+3z_2 + 4z_3|=9 , then value of |8z_2z_3 + 27z_3z_1 + 64z_1z_2|^(1//3) is :

If z_(1),z_(2),z_(3) are complex numbers such that |z_(1)|=|z_(2)|=|z_(3)|=|(1)/(z_(1))+(1)/(z_(2))+(1)/(z_(3))|=1 then |z_(1)+z_(2)+z_(3)| is equal to

If |z_(1)|=|z_(2)|=|z_(3)| and z_(1)+z_(2)+z_(3)=0 , then z_(1),z_(2),z_(3) are vertices of