Home
Class 12
MATHS
Let 1/(a1+omega) + 1/(a2+omega)+1/(a3+om...

Let `1/(a_1+omega) + 1/(a_2+omega)+1/(a_3+omega)+ … . + 1/(a_n+omega)=i`
where `a_1,a_2,a_3` …. `a_n in R` and `omega` is imaginary cube root of unity , then evaluate `sum_(r=1)^(n)(2a_r-1)/(a_r^2-a_r+1)` .

Text Solution

Verified by Experts

The correct Answer is:
0
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VK JAISWAL|Exercise EXERCISE-4:MATCHING TYPE PROBLEMS|3 Videos
  • CIRCLE

    VK JAISWAL|Exercise Exercise - 5 : Subjective Type Problems|13 Videos
  • COMPOUND ANGLES

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|31 Videos

Similar Questions

Explore conceptually related problems

If (1)/(a+omega)+(1)/(b+omega)+(1)/(c+omega)+(1)/(d+omega)=(1)/(omega) where a,b,c,d in R and omega is cube root of unity then show that sum(1)/(a^(2)-a+1)=1

The value of the expression 1.(2-omega).(2-omega^2)+2.(3-omega)(3-omega^2)+.+(n-1)(n-omega)(n-omega^2), where omega is an imaginary cube root of unity, is………

If 1, a_1,a_2,a_3 ,…, a_(n-1) are the nth roots of unity then prove that : (1-a_1)(1-a_2)(1-a_3)...(1-a_(n-1)) =n.

If (a_2 a_3)/(a_1 a_4) = (a_2 + a_3)/(a_1 + a_4) = 3 ((a_2 - a_3)/(a_1 - a_4)) then a_1, a_2, a_3, a_4 are in

If 1, a_1,a_2,a_3 ,…, a_(n-1) are the nth roots of unity then prove that : 1+a_1+a_2+…+a_(n-1) =0.

Evaluate: | (1, 1, 1), (1, omega^2, omega), (1, omega, omega^2)| (where omega is an imaginary cube root unity).