Home
Class 12
MATHS
The value of [ ( 2009! + 2006!)/(2008! ...

The value of ` [ ( 2009! + 2006!)/(2008! + 2007!)] ` is `K`. Then value of `K/1004`
(` [ *] ` denotes greatest integer function.)

A

3

B

2

C

4

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( K = \frac{2009! + 2006!}{2008! + 2007!} \), we can simplify it step by step. ### Step 1: Factor out the common terms We can factor out \( 2006! \) from the numerator and \( 2007! \) from the denominator. \[ K = \frac{2009! + 2006!}{2008! + 2007!} = \frac{2006!(2009 \times 2008 \times 2007 + 1)}{2007!(2008 + 1)} \] ### Step 2: Simplify the expression Now we can simplify \( 2007! \) in the denominator: \[ K = \frac{2006!(2009 \times 2008 \times 2007 + 1)}{2007 \times 2006!(2008 + 1)} \] The \( 2006! \) cancels out: \[ K = \frac{2009 \times 2008 \times 2007 + 1}{2007 \times (2008 + 1)} \] ### Step 3: Further simplification Now we can simplify the expression further: \[ K = \frac{2009 \times 2008 \times 2007 + 1}{2007 \times 2009} \] ### Step 4: Break down the fraction This can be broken down into two parts: \[ K = \frac{2009 \times 2008 \times 2007}{2007 \times 2009} + \frac{1}{2007 \times 2009} \] The first part simplifies to: \[ K = 2008 + \frac{1}{2007 \times 2009} \] ### Step 5: Evaluate \( K \) Since \( \frac{1}{2007 \times 2009} \) is a very small number, we can conclude that: \[ K \approx 2008 + \text{(a very small number)} \] Thus, the greatest integer function \( \lfloor K \rfloor = 2008 \). ### Step 6: Find \( \frac{K}{1004} \) Now we need to compute \( \frac{K}{1004} \): \[ \frac{K}{1004} = \frac{2008}{1004} = 2 \] ### Final Answer Thus, the value of \( \lfloor \frac{K}{1004} \rfloor \) is \( 2 \). ---
Promotional Banner

Topper's Solved these Questions

  • PERMUTATION AND COMBINATIONS

    VK JAISWAL|Exercise Exercise-2 : One or More than One Answer is/are Correct|4 Videos
  • PERMUTATION AND COMBINATIONS

    VK JAISWAL|Exercise Exercise-3 : Comprehension Type Problems|2 Videos
  • PARABOLA

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|3 Videos
  • PROBABILITY

    VK JAISWAL|Exercise Exercise -5 : Subjective Type problems|12 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xto0)|x|^([cosx]) , [.] denotes greatest integer function is

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

The value of lim_(x rarr0)|x|^([cos x]),[*] denotes greatest integer function is

The value of int_(0)^(1000)e^(x-[x])dx , is ([.] denotes the greatest integer function) :

The value of [ ( 2009! + 2006!)/(2008! + 2007!)] = ( [ *] denotes greatest integer function.)

The value of int_(-1)^(1)(x-[x])dx , (where [.] denotes greatest integer function)is

The value of lim_(x rarr0)[(sin x)/(x)] is (where [.] denotes greatest integer function)

The value of int_(0)^(100)sin(x-[x])pi dx is Here [.] denotes greatest integer function

The value of B=int_1^100 [sec^-1x]dx, (where [ . ] denotes greatest integer function), is equal to