Home
Class 12
MATHS
Let n in N, Sn=sum(r=0)^(3n)^(3n)Cr and ...

Let `n in N, S_n=sum_(r=0)^(3n)^(3n)C_r` and `T_n=sum_(r=0)^n^(3n)C_(3r)`, then `|S_n-3T_n|` equals

Text Solution

Verified by Experts

The correct Answer is:
2
Promotional Banner

Topper's Solved these Questions

  • BIONMIAL THEOREM

    VK JAISWAL|Exercise Exercise-3 : Matching Type Problems|3 Videos
  • AREA UNDER CURVES

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|8 Videos
  • CIRCLE

    VK JAISWAL|Exercise Exercise - 5 : Subjective Type Problems|13 Videos

Similar Questions

Explore conceptually related problems

If S_(n)=sum_(r=0)^(n)(1)/(nC_(r)) and sum_(r=0)^(n)(r)/(nC_(r)), then (t_(n))/(S_(n))=

If s_(n)=sum_(r=0)^(n)(1)/(.^(n)C_(r))and t_(n)=sum_(r=0)^(n)(r)/(.^(n)C_(r)) , then (t_(n))/(s_(n)) is equal to

If sum_(r=0)^(n)(2r)/(C(n,r))=sum_(r=0)^(n)(n^(3)-3n+3)/(C)(n,r)

sum_(r=0)^(m)*^(n+r)C_(n) is equal to

Evaluate sum_(r=0)^(n) ""^(n+r)C_(n) .