Home
Class 12
MATHS
For what value of x is the ninth term in...

For what value of x is the ninth term in the expansion of `(3^(log_3 sqrt(25^(x-1) +7)) + 3^(-1/8 log_3 (5^(x-1) +1)))^10` is equal to `180`

Text Solution

Verified by Experts

The correct Answer is:
`(4)`
Promotional Banner

Topper's Solved these Questions

  • BIONMIAL THEOREM

    VK JAISWAL|Exercise Exercise-3 : Matching Type Problems|3 Videos
  • AREA UNDER CURVES

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|8 Videos
  • CIRCLE

    VK JAISWAL|Exercise Exercise - 5 : Subjective Type Problems|13 Videos

Similar Questions

Explore conceptually related problems

A possible value of 'x', for which the ninth term in the expansion of { 3 ^(log _(3) sqrt(25 ^(x - 1) + 7))+ 3 ^(((1)/(8))log_(3) ^((5^(x-1)+1)))}^(10) in the increasing powers of 3^((-(1)/(8))log_(3) ^((5^(x - 1)+1))) is equal to 180 is

the value of x, for which the 6th term in the expansions of [2^(log_(2))(sqrt(9^((x-1)+7)))+(1)/(2^((1)/(5))(log)_(2)(3^(x-1)+1))]^(7) is equal to a.4 b.3 c.2 d.1

The value of x for which the sixth term in the expansion of [2^(log)_2sqrt(9^((x-1)+7))+1/(2^1/5(log)_2(3^((x-1)+1)))]^7 is 84 is 4 b. 1or2 c. 0or1 d. 3

The constant term in the expansion of (x+log_(e)(1-x))/(x^(3)) is

The value of x, for which the ninth term in the expansion of {sqrt(10)/((sqrt(x))^(5log _(10)x ))+ x.x^(1/(2log_(10)x))}^(10) is 450 is equal to