Home
Class 12
MATHS
If 7"log"(a)(16)/(15)+5"log"(a)(25)/(24...

If `7"log"_(a)(16)/(15)+5"log"_(a)(25)/(24)+3"log"_(a)(81)/(80)=8`, then `a=`

A

`2^(1//8)`

B

`(10)^(1//8)`

C

`(30)^(1//8)`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ 7 \log_a \left(\frac{16}{15}\right) + 5 \log_a \left(\frac{25}{24}\right) + 3 \log_a \left(\frac{81}{80}\right) = 8, \] we will use properties of logarithms. ### Step 1: Apply the logarithmic identity We know that \( \log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y \). We will apply this property to each term in the equation. \[ 7 \left( \log_a 16 - \log_a 15 \right) + 5 \left( \log_a 25 - \log_a 24 \right) + 3 \left( \log_a 81 - \log_a 80 \right) = 8. \] ### Step 2: Expand the equation Expanding the equation gives us: \[ 7 \log_a 16 - 7 \log_a 15 + 5 \log_a 25 - 5 \log_a 24 + 3 \log_a 81 - 3 \log_a 80 = 8. \] ### Step 3: Combine like terms Now, we can group the logarithmic terms: \[ (7 \log_a 16 + 5 \log_a 25 + 3 \log_a 81) - (7 \log_a 15 + 5 \log_a 24 + 3 \log_a 80) = 8. \] ### Step 4: Substitute logarithmic values Next, we will substitute the logarithmic values using their prime factorization: - \( 16 = 2^4 \) so \( \log_a 16 = 4 \log_a 2 \) - \( 25 = 5^2 \) so \( \log_a 25 = 2 \log_a 5 \) - \( 81 = 3^4 \) so \( \log_a 81 = 4 \log_a 3 \) - \( 15 = 3 \times 5 \) so \( \log_a 15 = \log_a 3 + \log_a 5 \) - \( 24 = 2^3 \times 3 \) so \( \log_a 24 = 3 \log_a 2 + \log_a 3 \) - \( 80 = 2^4 \times 5 \) so \( \log_a 80 = 4 \log_a 2 + \log_a 5 \) Substituting these into the equation gives: \[ 7(4 \log_a 2) + 5(2 \log_a 5) + 3(4 \log_a 3) - \left[7(\log_a 3 + \log_a 5) + 5(3 \log_a 2 + \log_a 3) + 3(4 \log_a 2 + \log_a 5)\right] = 8. \] ### Step 5: Simplify the equation This simplifies to: \[ 28 \log_a 2 + 10 \log_a 5 + 12 \log_a 3 - \left[7 \log_a 3 + 7 \log_a 5 + 15 \log_a 2 + 3 \log_a 5 + 12 \log_a 2\right] = 8. \] Combining like terms gives: \[ (28 \log_a 2 - 15 \log_a 2 - 12 \log_a 2) + (10 \log_a 5 - 7 \log_a 5 - 3 \log_a 5) + (12 \log_a 3 - 7 \log_a 3) = 8. \] This simplifies to: \[ 1 \log_a 2 + 0 \log_a 5 + 5 \log_a 3 = 8. \] ### Step 6: Solve for \( a \) This means: \[ \log_a 2 + 5 \log_a 3 = 8. \] Rearranging gives: \[ \log_a 2 = 8 - 5 \log_a 3. \] Using the change of base formula, we can express \( a \) in terms of \( 2 \) and \( 3 \): \[ a^{8 - 5 \log_a 3} = 2. \] Taking antilogarithm gives: \[ a^{8} = 2 \cdot a^{5 \log_a 3}. \] Thus, we can solve for \( a \). ### Final Step: Find the value of \( a \) From the equation, we can deduce that: \[ a^8 = 2 \cdot 3^5. \] Taking the eighth root gives: \[ a = \sqrt[8]{2 \cdot 243} = \sqrt[8]{486}. \] ### Conclusion Thus, the value of \( a \) is: \[ a = 2^{1/8} \cdot 3^{5/8}. \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    VK JAISWAL|Exercise Exercise-2 : One or More than One Answer is/are Correct|4 Videos
  • LOGARITHMS

    VK JAISWAL|Exercise Exercise-3 : Comprehension Type Problems|7 Videos
  • LIMIT

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • MATRICES

    VK JAISWAL|Exercise Exercise-4 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

The value of 7 log_(a) ""(16)/(15) + 5log_(a) ""(25)/(24) + 3 log_(a) ""(81)/(80) is

show that 7log((16)/(15))+5log((25)/(24))+3log((81)/(80))=log2

The value of 7log((16)/(15))+5log((25)/(24))+3log((81)/(80))=

7log((10)/(9))-2log((25)/(24))+3log((81)/(80))=log2

7log((10)/(9))-2log((25)/(24))+3log((81)/(80))

VK JAISWAL-LOGARITHMS -Exercise-5 : Subjective Type Problems
  1. If 7"log"(a)(16)/(15)+5"log"(a)(25)/(24)+3"log"(a)(81)/(80)=8, then a...

    Text Solution

    |

  2. The number N=6^(log(10)40). 5^(log(10)36) is a natural number ,Then su...

    Text Solution

    |

  3. The minimum value of 'c' such that log(b)(a^(log(2)b))=log(a)(b^(log(2...

    Text Solution

    |

  4. How many positive integers b have the property that log(b)729 is a pos...

    Text Solution

    |

  5. The number of negative integral values of x satisfying the inequality ...

    Text Solution

    |

  6. (6)/(5)a^((log(a)x)(log(10)a)(log(a)5))-3^(log(10)((x)/(10)))=9^(log(1...

    Text Solution

    |

  7. If log(5)((a+b)/(3))=(log(5)a+log(5)b)/(2),"then" (a^(4)+b^(4))/(a^(2...

    Text Solution

    |

  8. Let a , b , c , d be positive integers such that (log)a b=3/2a n d(log...

    Text Solution

    |

  9. The number of real values of x satisfying the equation log(10) sqrt(...

    Text Solution

    |

  10. The ordered pair (x,y) satisfying the equation x^(2)=1+6 log(4)y and...

    Text Solution

    |

  11. If log(7)log(7) sqrt(7sqrt(7sqrt(7)))=1-a log(7)2 and log(15)log(15) s...

    Text Solution

    |

  12. The number of ordered pair(s) of (x, y) satisfying the equations log...

    Text Solution

    |

  13. If log(b)n=2 and log(n)(2b)=2, then nb=

    Text Solution

    |

  14. If log(y) x + log(x) y = 2, x^(2)+y = 12 , then the value of xy is

    Text Solution

    |

  15. If x, y satisfy the equation, y^(x)=x^(y) and x=2y, then x^(2)+y^(2)=

    Text Solution

    |

  16. Find the number of real values of x satisfying the equation. log(2)(...

    Text Solution

    |

  17. If x(1), x(2)(x(1) gt x(2)) are the two solutions of the equation 3^...

    Text Solution

    |

  18. Find the number or real values of x satisfying the equation 9^(2log(9)...

    Text Solution

    |

  19. If log(16)(log(root(4)(3))(log(root(3)(5))(x)))=(1)/(2), find x.

    Text Solution

    |

  20. The value [(1)/(6)((2log(10)(1728))/(1+(1)/(2)log(10)(0.36)+(1)/(3)log...

    Text Solution

    |