Home
Class 12
MATHS
The value of ((1)/(sqrt(27)))^(2-((log(...

The value of `((1)/(sqrt(27)))^(2-((log_(5)16)/(2log_(5)9)))` equal to :

A

`(5sqrt(2))/(27)`

B

`(sqrt(2))/(27)`

C

`(4sqrt(2))/(27)`

D

`(2sqrt(2))/(27)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\left(\frac{1}{\sqrt{27}}\right)^{2 - \frac{\log_{5} 16}{2 \log_{5} 9}}\), we will follow these steps: ### Step 1: Simplify the base The base \(\frac{1}{\sqrt{27}}\) can be rewritten as: \[ \frac{1}{\sqrt{27}} = \frac{1}{27^{1/2}} = 27^{-1/2} \] ### Step 2: Rewrite the exponent Next, we simplify the exponent \(2 - \frac{\log_{5} 16}{2 \log_{5} 9}\). We can rewrite \(\log_{5} 16\) and \(\log_{5} 9\) using properties of logarithms: \[ \log_{5} 16 = \log_{5} (2^4) = 4 \log_{5} 2 \] \[ \log_{5} 9 = \log_{5} (3^2) = 2 \log_{5} 3 \] Thus, we can substitute these into the exponent: \[ 2 - \frac{4 \log_{5} 2}{2 \cdot 2 \log_{5} 3} = 2 - \frac{4 \log_{5} 2}{4 \log_{5} 3} = 2 - \frac{\log_{5} 2}{\log_{5} 3} \] ### Step 3: Combine the exponent Now we can express the exponent as: \[ 2 - \frac{\log_{5} 2}{\log_{5} 3} = 2 - \log_{3} 2 \] (using the change of base formula, \(\log_{5} 2 / \log_{5} 3 = \log_{3} 2\)) ### Step 4: Substitute back into the expression Now we can substitute back into our expression: \[ (27^{-1/2})^{2 - \log_{3} 2} \] Using the property of exponents, we can simplify this to: \[ 27^{-\frac{1}{2}(2 - \log_{3} 2)} = 27^{-\frac{1}{2} \cdot 2 + \frac{1}{2} \log_{3} 2} = 27^{-1 + \frac{1}{2} \log_{3} 2} \] ### Step 5: Rewrite 27 in terms of base 3 Since \(27 = 3^3\), we can rewrite the expression as: \[ (3^3)^{-1 + \frac{1}{2} \log_{3} 2} = 3^{-3 + \frac{3}{2} \log_{3} 2} \] ### Step 6: Simplify the exponent Now we simplify the exponent: \[ -3 + \frac{3}{2} \log_{3} 2 = -3 + \log_{3} 2^{3/2} = \log_{3} \left(\frac{2^{3/2}}{27}\right) \] ### Step 7: Final expression Thus, we can express our final answer as: \[ 3^{-3 + \frac{3}{2} \log_{3} 2} = \frac{2^{3/2}}{27} \] ### Conclusion The value of \(\left(\frac{1}{\sqrt{27}}\right)^{2 - \frac{\log_{5} 16}{2 \log_{5} 9}}\) is: \[ \frac{2^{3/2}}{27} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    VK JAISWAL|Exercise Exercise-2 : One or More than One Answer is/are Correct|4 Videos
  • LOGARITHMS

    VK JAISWAL|Exercise Exercise-3 : Comprehension Type Problems|7 Videos
  • LIMIT

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • MATRICES

    VK JAISWAL|Exercise Exercise-4 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

Compute sqrt((1/sqrt(27))^(2*(log_(5)13)/(2log_(5) 9))

The value of OF 81^(1/(log_5(3)))+27^(log_9(36))+3^(4/(log_7(9))) is equal to (a) 49 ((b)625 (c) 216 (d) 890

the value of sqrt((log_(0.5)4)^(2))

the value of sqrt((log_(0.5)4)^(2))

log_(5sqrt(5))5 is equal to

The value of 81^((1)/(log_(5)(3)))+27^(log_(9)(36))+3^((4)/(log7)(9))

The value of (log_(8)17)/(log_(9)23)-(log_(2sqrt(2))17)/(log_(3)23) is equal to

VK JAISWAL-LOGARITHMS -Exercise-5 : Subjective Type Problems
  1. The value of ((1)/(sqrt(27)))^(2-((log(5)16)/(2log(5)9))) equal to :

    Text Solution

    |

  2. The number N=6^(log(10)40). 5^(log(10)36) is a natural number ,Then su...

    Text Solution

    |

  3. The minimum value of 'c' such that log(b)(a^(log(2)b))=log(a)(b^(log(2...

    Text Solution

    |

  4. How many positive integers b have the property that log(b)729 is a pos...

    Text Solution

    |

  5. The number of negative integral values of x satisfying the inequality ...

    Text Solution

    |

  6. (6)/(5)a^((log(a)x)(log(10)a)(log(a)5))-3^(log(10)((x)/(10)))=9^(log(1...

    Text Solution

    |

  7. If log(5)((a+b)/(3))=(log(5)a+log(5)b)/(2),"then" (a^(4)+b^(4))/(a^(2...

    Text Solution

    |

  8. Let a , b , c , d be positive integers such that (log)a b=3/2a n d(log...

    Text Solution

    |

  9. The number of real values of x satisfying the equation log(10) sqrt(...

    Text Solution

    |

  10. The ordered pair (x,y) satisfying the equation x^(2)=1+6 log(4)y and...

    Text Solution

    |

  11. If log(7)log(7) sqrt(7sqrt(7sqrt(7)))=1-a log(7)2 and log(15)log(15) s...

    Text Solution

    |

  12. The number of ordered pair(s) of (x, y) satisfying the equations log...

    Text Solution

    |

  13. If log(b)n=2 and log(n)(2b)=2, then nb=

    Text Solution

    |

  14. If log(y) x + log(x) y = 2, x^(2)+y = 12 , then the value of xy is

    Text Solution

    |

  15. If x, y satisfy the equation, y^(x)=x^(y) and x=2y, then x^(2)+y^(2)=

    Text Solution

    |

  16. Find the number of real values of x satisfying the equation. log(2)(...

    Text Solution

    |

  17. If x(1), x(2)(x(1) gt x(2)) are the two solutions of the equation 3^...

    Text Solution

    |

  18. Find the number or real values of x satisfying the equation 9^(2log(9)...

    Text Solution

    |

  19. If log(16)(log(root(4)(3))(log(root(3)(5))(x)))=(1)/(2), find x.

    Text Solution

    |

  20. The value [(1)/(6)((2log(10)(1728))/(1+(1)/(2)log(10)(0.36)+(1)/(3)log...

    Text Solution

    |