Home
Class 12
MATHS
Let lambda=log(5)log(5)(3). If 3^(k+5^(-...

Let `lambda=log_(5)log_(5)(3)`. If `3^(k+5^(-lambda))=405`, then the value of k is :

A

3

B

5

C

4

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given information: Let \( \lambda = \log_5(\log_5(3)) \). We are given the equation: \[ 3^{k + 5^{-\lambda}} = 405 \] ### Step 1: Simplify \( 5^{-\lambda} \) Using the definition of \( \lambda \): \[ \lambda = \log_5(\log_5(3)) \] Thus, \[ 5^{-\lambda} = 5^{-\log_5(\log_5(3))} = \frac{1}{\log_5(3)} \] ### Step 2: Substitute \( 5^{-\lambda} \) into the equation Now substitute \( 5^{-\lambda} \) into the original equation: \[ 3^{k + \frac{1}{\log_5(3)}} = 405 \] ### Step 3: Rewrite 405 in terms of powers of 3 We can express 405 as: \[ 405 = 3^4 \times 5^1 \] ### Step 4: Take logarithm base 3 of both sides Taking logarithm base 3 of both sides gives: \[ k + \frac{1}{\log_5(3)} = \log_3(405) \] ### Step 5: Calculate \( \log_3(405) \) Using the property of logarithms: \[ \log_3(405) = \log_3(3^4 \times 5^1) = 4 + \log_3(5) \] ### Step 6: Substitute back into the equation Now we have: \[ k + \frac{1}{\log_5(3)} = 4 + \log_3(5) \] ### Step 7: Isolate \( k \) Rearranging gives: \[ k = 4 + \log_3(5) - \frac{1}{\log_5(3)} \] ### Step 8: Simplify \( \frac{1}{\log_5(3)} \) Using the change of base formula: \[ \log_5(3) = \frac{1}{\log_3(5)} \] Thus, \[ \frac{1}{\log_5(3)} = \log_3(5) \] ### Step 9: Substitute back into the equation for \( k \) Substituting this back gives: \[ k = 4 + \log_3(5) - \log_3(5) = 4 \] ### Final Answer The value of \( k \) is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    VK JAISWAL|Exercise Exercise-2 : One or More than One Answer is/are Correct|4 Videos
  • LOGARITHMS

    VK JAISWAL|Exercise Exercise-3 : Comprehension Type Problems|7 Videos
  • LIMIT

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • MATRICES

    VK JAISWAL|Exercise Exercise-4 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

If log_(7)2 = lambda , then the value of log_(49) (28) is

If (log_(5) K) (log_(3) 5) (log_(k) x ) = k , then the value of x if k = 3 is

If P=log_(5)(log_(5)3) and backslash3^(C)+5^((-P))=405 then C is equal to

If log_(k)xlog_(5)k=3 , then find the value of x.

If log_(a)b=1/2,log_(b)c=1/3" and "log_(c)a=(K)/(5) , then the value of K is

x=log_(5)3+log_(7)5+log_(9)7

if log_(k)x.log_(5)k=log_(x)5,k!=1,k>0, then find the value of x

If 3^(log_(3)(5))+5^(log_(x)3) =8 then find the value of x.

If log_(5) log_(5) log_(3) x = 0 , then value of x is

If log (3+ 4 + k) = log 3 + log 4 + log k, then the value of k is

VK JAISWAL-LOGARITHMS -Exercise-5 : Subjective Type Problems
  1. Let lambda=log(5)log(5)(3). If 3^(k+5^(-lambda))=405, then the value o...

    Text Solution

    |

  2. The number N=6^(log(10)40). 5^(log(10)36) is a natural number ,Then su...

    Text Solution

    |

  3. The minimum value of 'c' such that log(b)(a^(log(2)b))=log(a)(b^(log(2...

    Text Solution

    |

  4. How many positive integers b have the property that log(b)729 is a pos...

    Text Solution

    |

  5. The number of negative integral values of x satisfying the inequality ...

    Text Solution

    |

  6. (6)/(5)a^((log(a)x)(log(10)a)(log(a)5))-3^(log(10)((x)/(10)))=9^(log(1...

    Text Solution

    |

  7. If log(5)((a+b)/(3))=(log(5)a+log(5)b)/(2),"then" (a^(4)+b^(4))/(a^(2...

    Text Solution

    |

  8. Let a , b , c , d be positive integers such that (log)a b=3/2a n d(log...

    Text Solution

    |

  9. The number of real values of x satisfying the equation log(10) sqrt(...

    Text Solution

    |

  10. The ordered pair (x,y) satisfying the equation x^(2)=1+6 log(4)y and...

    Text Solution

    |

  11. If log(7)log(7) sqrt(7sqrt(7sqrt(7)))=1-a log(7)2 and log(15)log(15) s...

    Text Solution

    |

  12. The number of ordered pair(s) of (x, y) satisfying the equations log...

    Text Solution

    |

  13. If log(b)n=2 and log(n)(2b)=2, then nb=

    Text Solution

    |

  14. If log(y) x + log(x) y = 2, x^(2)+y = 12 , then the value of xy is

    Text Solution

    |

  15. If x, y satisfy the equation, y^(x)=x^(y) and x=2y, then x^(2)+y^(2)=

    Text Solution

    |

  16. Find the number of real values of x satisfying the equation. log(2)(...

    Text Solution

    |

  17. If x(1), x(2)(x(1) gt x(2)) are the two solutions of the equation 3^...

    Text Solution

    |

  18. Find the number or real values of x satisfying the equation 9^(2log(9)...

    Text Solution

    |

  19. If log(16)(log(root(4)(3))(log(root(3)(5))(x)))=(1)/(2), find x.

    Text Solution

    |

  20. The value [(1)/(6)((2log(10)(1728))/(1+(1)/(2)log(10)(0.36)+(1)/(3)log...

    Text Solution

    |