Home
Class 12
MATHS
If y = mx + c be a tangent to the hyperb...

If `y = mx + c` be a tangent to the hyperbola `x^2/lambda^2-y^2/(lambda^3+lambda^2+lambda)^2 = 1, (lambda!=0),` then

A

0

B

1

C

4

D

9

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    VK JAISWAL|Exercise Exercise-2 : One or More than One Answer is/are Correct|4 Videos
  • HYPERBOLA

    VK JAISWAL|Exercise Exercise-3 : Comprehension Type Problems|3 Videos
  • FUNCTION

    VK JAISWAL|Exercise SUBJECTIVE TYPE PROBLEMS|34 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|29 Videos

Similar Questions

Explore conceptually related problems

If the line y=2x+lambda be a tangent to the hyperbola 36x^(2)-25y^(2)=3600 , then lambda is equal to

Show that the area of the triangle with vertices (lambda, lambda-2), (lambda+3, lambda) and (lambda+2, lambda+2) is independent of lambda .

If the points A(lambda, 2lambda), B(3lambda,3lambda) and C(3,1) are collinear, then lambda=

If the line y=3x+lambda touches the hyperbola 9x^(2)-5y^(2)=45 , then lambda =

For any lambda in R, the locus x^(2)+y^(2)-2 lambda x-2 lambda y+lambda^(2)=0 touches the line

If the area (in sq.units) bounded by the parabola y^(2)=4 lambda x and the line y=lambda x,lambda>0, is (1)/(9), then lambda is equal to:

If the sum of the slopes of the normal from a a point P to the hyperbola xy=c^(2) is equal to lambda(lambda in R^(+)), then the locus of point P is (a) x^(2)=lambda c^(2)( b) y^(2)=lambda c^(2)( c) xy=lambda c^(2)( d) none of these