Home
Class 12
MATHS
The area of quadrilateral formed by foci...

The area of quadrilateral formed by focii of hyperbola `x^2/4-y^2/3=1` & its conjugate hyperbola is

A

3

B

4

C

1

D

5

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    VK JAISWAL|Exercise Exercise-2 : One or More than One Answer is/are Correct|4 Videos
  • HYPERBOLA

    VK JAISWAL|Exercise Exercise-3 : Comprehension Type Problems|3 Videos
  • FUNCTION

    VK JAISWAL|Exercise SUBJECTIVE TYPE PROBLEMS|34 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|29 Videos

Similar Questions

Explore conceptually related problems

Find the length of latus rectum L of ellipse (x^(2))/(A^(2)) + (y^(2))/(9) = 1, (A^2) gt 9) where A^2 is the area enclosed by quadrilateral formed by joining the focii of hyperbola (x^(2))/(16) - (y^(2))/(9) = 1 and its conjugate hyperbola

Comparison of Hyperbola and its conjugate hyperbola

If e and e\' are the eccentricities of the hyperbola x^2/a^2 - y^2/b^2 = 1 and its conjugate hyperbola, prove that 1/e^2 + 1+e\'^2 = 1

If e and e' are the eccentricities of the hyperbola x^(2)/a^(2)-y^(2)/b^(2)=1 and its conjugate hyperbola,the value of 1/e^(2)+1/e^prime2 is

The foci of the hyperbola 4x^(2)-9y^(2)-1=0 are

The foci of the hyperbola 4x^(2)-9y^(2)-1=0 are

Area of the quadrilateral formed with the foci of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 and (x^(2))/(a^(2))-(y^(2))/(b^(2))=-1( a) 4(a^(2)+b^(2))( b) 2(a^(2)+b^(2))( c) (a^(2)+b^(2))(d)(1)/(2)(a^(2)+b^(2))

Show that there cannot be any common tangent to the hyperbola x^(2)/a^(2) - y^(2)/b^(2) = 1 and its conjugate hyperbola.

The tangent at the vertex of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 meets its conjugate hyperbola at the point whose coordinates are