Home
Class 12
MATHS
Number of solution of tan(2x)= tan(6x) ...

Number of solution of ` tan(2x)= tan(6x) ` in ` ( 0, 3 pi)` is :

A

4

B

5

C

3

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the number of solutions for the equation \( \tan(2x) = \tan(6x) \) in the interval \( (0, 3\pi) \), we can follow these steps: ### Step 1: Use the periodic property of tangent Since \( \tan(A) = \tan(B) \) implies \( A = B + n\pi \) for some integer \( n \), we can write: \[ 2x = 6x + n\pi \] ### Step 2: Rearrange the equation Rearranging the equation gives us: \[ 2x - 6x = n\pi \implies -4x = n\pi \implies x = -\frac{n\pi}{4} \] ### Step 3: Determine valid \( n \) values We need to find the values of \( n \) such that \( x \) lies within the interval \( (0, 3\pi) \): \[ 0 < -\frac{n\pi}{4} < 3\pi \] This can be split into two inequalities: 1. \( -\frac{n\pi}{4} > 0 \) which implies \( n < 0 \) 2. \( -\frac{n\pi}{4} < 3\pi \) which implies \( n > -12 \) ### Step 4: Identify integer values for \( n \) The integer values of \( n \) that satisfy \( -12 < n < 0 \) are: \[ n = -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1 \] This gives us a total of 11 possible values for \( n \). ### Step 5: Calculate the corresponding \( x \) values For each valid \( n \): - When \( n = -1 \), \( x = \frac{\pi}{4} \) - When \( n = -2 \), \( x = \frac{\pi}{2} \) - When \( n = -3 \), \( x = \frac{3\pi}{4} \) - When \( n = -4 \), \( x = \pi \) - When \( n = -5 \), \( x = \frac{5\pi}{4} \) - When \( n = -6 \), \( x = \frac{3\pi}{2} \) - When \( n = -7 \), \( x = \frac{7\pi}{4} \) - When \( n = -8 \), \( x = 2\pi \) - When \( n = -9 \), \( x = \frac{9\pi}{4} \) - When \( n = -10 \), \( x = \frac{5\pi}{2} \) - When \( n = -11 \), \( x = \frac{11\pi}{4} \) ### Step 6: Count valid solutions Now we need to check which of these values lie within \( (0, 3\pi) \): - \( \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \pi, \frac{5\pi}{4}, \frac{3\pi}{2}, \frac{7\pi}{4}, 2\pi, \frac{9\pi}{4}, \frac{5\pi}{2}, \frac{11\pi}{4} \) The values \( \frac{9\pi}{4}, \frac{5\pi}{2}, \frac{11\pi}{4} \) exceed \( 3\pi \), so we exclude them. ### Final Count Thus, the valid solutions are: 1. \( \frac{\pi}{4} \) 2. \( \frac{\pi}{2} \) 3. \( \frac{3\pi}{4} \) 4. \( \pi \) 5. \( \frac{5\pi}{4} \) 6. \( \frac{3\pi}{2} \) 7. \( \frac{7\pi}{4} \) 8. \( 2\pi \) This gives us a total of 8 solutions in the interval \( (0, 3\pi) \). ### Conclusion The number of solutions of \( \tan(2x) = \tan(6x) \) in \( (0, 3\pi) \) is **8**. ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    VK JAISWAL|Exercise Exercise-2 : One or More than One Answer is/are Correct|11 Videos
  • TRIGONOMETRIC EQUATIONS

    VK JAISWAL|Exercise Exercise-3 : Comprehension Type Problems|3 Videos
  • STRAIGHT LINES

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|10 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|16 Videos

Similar Questions

Explore conceptually related problems

Number of solution of the equation tan3x+tan x=0 in (0,pi) is

tan x=-tan(pi/6)

The number of solutions of the equation tan2x*tan x=1 x in[0,2 pi] is

The number of solutions of the equation tan2xtan x=1, x in[0,2 pi] is

Total number of solution of tan3x-tan2x-tan3xtan2x=1 in [0,2pi] is equal to

Find the number of solution of 2 tan^(-1) (tan x) = 6 - x

The number of solutions of x+2+tan x=(pi)/(2) in [0,2 pi] is

The number of solutions of |sin x|=tan x in [0,4 pi] is/are

The number of solutions of the equation e^(x)=tan x,0