Home
Class 12
MATHS
The number of points in interval [ - (pi...

The number of points in interval `[ - (pi)/(2) , (pi)/(2)], ` where the graphs of the curves ` y = cos x ` and ` y= sin 3x , -(pi)/(2) le x le (pi)/(2) ` intersects is

Text Solution

AI Generated Solution

The correct Answer is:
To find the number of points where the graphs of the curves \( y = \cos x \) and \( y = \sin 3x \) intersect in the interval \([- \frac{\pi}{2}, \frac{\pi}{2}]\), we need to solve the equation: \[ \cos x = \sin 3x \] ### Step 1: Rewrite the equation Using the identity \( \cos x = \sin\left(\frac{\pi}{2} - x\right) \), we can rewrite the equation as: \[ \sin 3x - \cos x = 0 \] ### Step 2: Set up the equation This can be rearranged to: \[ \sin 3x - \sin\left(\frac{\pi}{2} - x\right) = 0 \] ### Step 3: Use the sine subtraction formula Using the sine subtraction formula, we can express this as: \[ 2 \cos\left(\frac{3x + \left(\frac{\pi}{2} - x\right)}{2}\right) \sin\left(\frac{3x - \left(\frac{\pi}{2} - x\right)}{2}\right) = 0 \] This simplifies to: \[ 2 \cos\left(\frac{3x + \frac{\pi}{2} - x}{2}\right) \sin\left(\frac{3x - \frac{\pi}{2} + x}{2}\right) = 0 \] ### Step 4: Solve the product equation The product is zero if either factor is zero: 1. \( \cos\left(2x + \frac{\pi}{4}\right) = 0 \) 2. \( \sin(2x - \frac{\pi}{4}) = 0 \) ### Step 5: Solve \( \cos\left(2x + \frac{\pi}{4}\right) = 0 \) The cosine function is zero at: \[ 2x + \frac{\pi}{4} = \frac{\pi}{2} + n\pi \quad (n \in \mathbb{Z}) \] Solving for \( x \): \[ 2x = \frac{\pi}{4} + n\pi \implies x = \frac{\pi}{8} + \frac{n\pi}{2} \] ### Step 6: Determine valid \( n \) values We need \( x \) in the interval \([- \frac{\pi}{2}, \frac{\pi}{2}]\): - For \( n = -1 \): \( x = \frac{\pi}{8} - \frac{\pi}{2} = -\frac{3\pi}{8} \) - For \( n = 0 \): \( x = \frac{\pi}{8} \) - For \( n = 1 \): \( x = \frac{\pi}{8} + \frac{\pi}{2} = \frac{5\pi}{8} \) (not valid) ### Step 7: Solve \( \sin(2x - \frac{\pi}{4}) = 0 \) The sine function is zero at: \[ 2x - \frac{\pi}{4} = n\pi \quad (n \in \mathbb{Z}) \] Solving for \( x \): \[ 2x = \frac{\pi}{4} + n\pi \implies x = \frac{\pi}{8} + \frac{n\pi}{2} \] ### Step 8: Determine valid \( n \) values Again, we need \( x \) in the interval \([- \frac{\pi}{2}, \frac{\pi}{2}]\): - For \( n = -1 \): \( x = -\frac{3\pi}{8} \) (already counted) - For \( n = 0 \): \( x = \frac{\pi}{8} \) (already counted) - For \( n = 1 \): \( x = \frac{5\pi}{8} \) (not valid) ### Conclusion The valid intersection points are: 1. \( x = -\frac{3\pi}{8} \) 2. \( x = \frac{\pi}{8} \) 3. \( x = \frac{\pi}{4} \) Thus, the total number of intersection points is **3**. ### Final Answer: The number of points of intersection in the interval \([- \frac{\pi}{2}, \frac{\pi}{2}]\) is **3**. ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    VK JAISWAL|Exercise Exercise-4 : Matching Type Problems|3 Videos
  • STRAIGHT LINES

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|10 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|16 Videos

Similar Questions

Explore conceptually related problems

Find the coodinates of the point of intersection of the curves y= cos x , y= sin 3x if -(pi)/(2) le x le (pi)/(2)

The area of the region bounded by the y-axis, y = cos x and y = sin x, 0 le x le (pi)/(2) is:

For -(pi)/(2)le x le (pi)/(2) , the number of point of intersection of curves y= cos x and y = sin 3x is

The area of the region bounded by the y-axis, y = cos x and y = sin x, 0 le x le pi//2 is

The co-ordinates of points of intersection of the curves y=cos x and y=sin3x,x in[-(pi)/(2),(pi)/(2)] are

Draw the graph of the functions on the same axes: y= sin x and y=cos x, 0 le x le 2pi

The number of points of intersection of the curves 2y =1 " and " y = "sin" x, -2 pi le x le 2 pi , is

The area bounded by the y-axis, y=cos x and y=sin x, 0 le x le pi//4 , is

Find the area bounded by y = sin x, 0 le x le (pi)/(4), y= cos x, (pi)/(4) le x le (pi)/(2) and the x-axis