Home
Class 12
MATHS
In triangle ABC if A:B:C=1:2:4," then "...

In triangle ABC if `A:B:C=1:2:4," then " (a^(2)-b^(2))(b^(2)-c^(2))(c^(2)-a^(2))=lambda a^(2)b^(2)c^(2)`, where `lambda=`
(where notations have their usual meaning)

A

1

B

2

C

3

D

`(1)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • SOLUTION OF TRIANGLES

    VK JAISWAL|Exercise Exercise-2 : One or More than One Answer is/are Correct|15 Videos
  • SOLUTION OF TRIANGLES

    VK JAISWAL|Exercise Exercise-3 : Comprehension Type Problems|16 Videos
  • SEQUENCE AND SERIES

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|21 Videos
  • STRAIGHT LINES

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|10 Videos

Similar Questions

Explore conceptually related problems

In triangle ABC,/_C=90^(@) then (a^(2)-b^(2))/(a^(2)+b^(2))=

In triangle ABC,C=90^(@). Then (a^(2)-b^(2))/(a^(2)+b^(2))=

In a triangle ABC if 2Delta^(2)=(a^(2)b^(2)c^(2))/(a^(2)+b^(2)+c^(2)) , then it is

In an acute triangle ABC if 2a^(2)b^(2)+2b^(2)c^(2)=a^(4)+b^(4)+c^(4), then angle

In any triangle ABC, prove that: (sin(B-C))/(sin(B+C))=(b^(2)-c^(2))/(a^(2))

In /_ABC, if c^(4)-2(a^(2)+b^(2))c^(2)+a^(4)+a^(2)b^(2)+b^(4)=0 then

In a triangle ABC, if (a+b+c)(a-b)^(2)+(b-c)^(2)+(c-a)^(2))=2c^(2)(a+b+c)-6abc, then

Show that b^(2)c^(2)+c^(2)a^(2)+a^(2)b^(2)>abc(a+b+c), where a,b,c are different positivine integers.

In triangle ABC(a^(2)-b^(2)-c^(2))tan A+(a^(2)-b^(2)+c^(2))tan B=

In a triangle ABC. If triangle^(2) = (a^(2)b^(2)c^(2))/(2(a^(2)+b^(2)+c^(2)) , where triangle is the area of the triangle, then the triangle is