Home
Class 12
MATHS
Let cos^(-1)(4x^(3)-3x)=a+b cos^(-1)x ...

Let `cos^(-1)(4x^(3)-3x)=a+b cos^(-1)x`
Q. If `x in [-(1)/(2), (1)/(2)]`, then `sin^(-1)("sin"(a)/(b))` is :

A

`-(pi)/(3)`

B

`(pi)/(3)`

C

`-(pi)/(6)`

D

`(pi)/(6)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-4 : Matching Type Problems|4 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL|Exercise Exercise-2 : One or More than One Answer is/are Correct|6 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|29 Videos
  • LIMIT

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

Let cos^(-1)(4x^(3)-3x)=a+b cos^(-1)x If x in[-(1)/(2),-1], then a+b pi=

Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in [-1, -(1)/(2)) , then the value of a + b pi is

Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in ((1)/(2), 1] , then the value of lim_( y to a)b cos (y) is

3sin^(-1)x=sin(3x-4x^(3)),x in[-(1)/(2),(1)/(2)]

solve sin^(-1)x-cos^(-1)x=sin^(-1)(3x-2)

(cos^(3) x- sin^(2) x)/(cos x - sin x)=(1)/(2) (2 + sin 2x)

If sin^(-1) x + sin^(-1) y = (2pi)/3", then " cos^(-1) x + cos^(-1) y

If sin^(-1)x+sin^(-1)y=(2pi)/3 , then cos^(-1)x+cos^(-1)y is equal to

Prove that sin^(-1)(3x-4x^3)=3sin^(-1)x,x in[1/2,1]