Home
Class 11
MATHS
The point (sintheta, costheta). theta be...

The point `(sintheta, costheta). theta` being any real number, die inside the circle `x^2+y^2-2x-2y+lambda=0` if

Promotional Banner

Similar Questions

Explore conceptually related problems

The point (1,2) lies inside the circle x^(2)+y^(2)-2x+6y+1=0 .

A point which is inside the circle x^(2)+y^(2)+3x-3y+2=0 is :

A point which is inside the circle x^(2)+y^(2)+3x-3y+2=0 is :

The point (1,2) lies inside the circle x^(2) + y^(2) - 2x + 6y + 1 = 0 .

If the point (lambda,1+lambda) be lying inside the circle x^2+y^2 =1 then

Radius of the circle x^2+y^2+2x costheta+2y sintheta-8=0 is

If the point (2costheta, 2sintheta) , for theta in (0 ,2pi) lies in the region between the lines x+y=2 and x-y=2 containing origin, then theta lies in

The length of the tangent drawn from any point on the circle x^(2) + y^(2) + 2f y + lambda = 0 to the circle x^(2) + y^(2) + 2f y + mu = 0 , where mu gt lambda gt 0 , is

Let x= cos theta and y = sin theta for any real value theta . Then x^(2)+y^(2)=