Home
Class 11
MATHS
The points A(0,0),B(cosalpha,sinalpha) ...

The points `A(0,0),B(cosalpha,sinalpha)` and `C(cosbeta,sinbeta)` are the vertices of a right-angled triangle if (a)`sin((alpha-beta)/2)=1/(sqrt(2))` (b) `cos((alpha-beta)/2)=-1/(sqrt(2))` (c)`cos((alpha-beta)/2)=1/(sqrt(2))` (d) `sin((alpha-beta)/2)=-1/(sqrt(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

The points A(0, 0), B(cos alpha, sin alpha) and C(cos beta, sin beta) are the vertices of a right angled triangle if :

If cos alpha=(1)/(sqrt(2)),sin beta=(1)/(sqrt(3)), show that tan((alpha+beta)/(2))cot((alpha-beta)/(2))=5+2sqrt(6) or 5-2sqrt(6)

csc^(2)(alpha+beta)-sin^(2)(beta-alpha)+sin^(2)(2 alpha-beta)=cos^(2)(alpha-beta) where alpha,beta in(0,(pi)/(2)), then sin(alpha-beta) is equals

2sin^(2)beta+4cos(alpha+beta)sin alpha sin beta+cos2(alpha+beta)=

If cos alpha+cos beta=0=sin alpha+sin beta, then cos2 alpha+cos2 beta is equal to (a)-2sin(alpha+beta)(b)-2cos(alpha+beta)(c)2sin(alpha+beta)(d)2cos(alpha+beta)

Let (sqrt(2)sin alpha)/sqrt(1+cos 2alpha)=1/7 and sqrt((1-cos2 beta)/2)=1/sqrt(10) where alpha,beta in (0,pi/2) . Then tan(alpha+2beta) is equal to

If the sides of two sides of a right angled triangle are (cos2 alpha+cos2 beta+2cos(alpha+beta)) and (sin2 alpha+sin2 beta+2sin(alpha+beta)) then find the hypotenuse

If sqrt2(sin alpha)/(sqrt(1+cos2 alpha))=1/7 and sqrt((1-cos2beta)/2)=1/(sqrt(10)) alpha, beta in (0, pi/2) then tan (alpha + 2 beta) is equal to _________

tan alpha and tan beta are roots of the equation x^(2)+ax+b=0, then the value of sin^(2)(alpha+beta)+a sin(alpha+beta)cos(alpha+beta)+b cos^(2)(alpha+beta) is equal to

tan alpha and tan beta are roots of the equation x^(2)+ax+b=0, then the value of sin^(2)(alpha+beta)+a sin(alpha+beta)*cos(alpha+beta)+b cos^(2)(alpha+beta) is equal to