Home
Class 12
MATHS
lim(x->1)sqrt(1-cos2(x-1))/(x-1) a. exi...

`lim_(x->1)sqrt(1-cos2(x-1))/(x-1)` a. exists and its equals `sqrt(2)` b. exists and its equals `sqrt(-2)` c.does not exist because `x-1->0` d. L.H.L not equal R.H.L

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr1)(sqrt(1-cos2(x-1)))/(x-1) a.exists and its equals sqrt(2) b.exists and its equals sqrt(-2) c.does not exist because x-1rarr0 d.L.H.L. not equal R.H.L.

Show that lim_(xto1)(sqrt(1-cos(x-1)))/(x-1) does not exist.

Find lim_(xto0) sqrt((1)/(2)(1-cos2x))/(x) if exists.

Find lim_(xto0) sqrt((1)/(2)(1-cos2x))/(x) if exists.

Find lim_(xto0) sqrt((1)/(2)(1-cos2x))/(x) if exists.

(lim)_(x rarr2)((sqrt(1-cos{2(x-2)}))/(x-2))(1) does not exist (2) equals sqrt(2)(3) equals -sqrt(2)(4) equals (1)/(sqrt(2))

lim_(x rarr0)(sqrt(1+x)-sqrt(1-x))/(2x) is equal to

lim_(x rarr(-1)^(+))(sqrt(pi)-sqrt(cos^(-1)x))/(sqrt(x+1)) is equal to

If Lim_(x rarr 0) (1-cosx)/(e^(ax)-bx-1) exist and is equal to 1, then (a^(2) + b^(2)) equals