Home
Class 12
MATHS
lim(x->1^-1) ([x])^(1-x) where [ .] deno...

`lim_(x->1^-1) ([x])^(1-x)` where [ .] denotes greatest integer function

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0^(-))([x])/(x) (where [.] denotes greatest integer function) is

Let Lim_(x rarr1)([x])/(x)=l and lim_(x rarr1)(x)/([x])=m where [ .] denotes the greatest integer function, then

lim_(x rarr-1)([x]+|x|). (where [.] denotes the greatest integer function)

Solve lim_(xrarr1)[sin^(-1)x] (where [.] denotes greatest integer function.)

Solve lim_(xtooo) [tan^(-1)x] (where [.] denotes greatest integer function)

lim_(xrarr1([x]+[x]) , (where [.] denotes the greatest integer function )

underset(xrarr(-1)/(3))(lim)(1)/(x)[(-1)/(x)]= (where [.] denotes the greatest integer function)

lim_(x -> 0)[sin[x-3]/([x-3])] where [.] denotes greatest integer function is

lim_(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function)

lim_(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function)