Home
Class 14
MATHS
a,b,c and d are positive integers. Quan...

a,b,c and d are positive integers. Quantity I: `'a':-((a+d)^(2)-(a-d)^(2))/(8ad(a+d)^(2))=1` Quantity II: `'b'((b+d)^(3)-(b-d)^(3))/((d^(2)+3b^(2)))=(1)/(8d)` Quantity III: `'c':-(sqrt(c+d)+sqrt(c-d))/(sqrt(c+d)-sqrt(c-d))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c,d are distinct integers in A.Puch that d=a^(2)+b^(2)+c^(2), then a+b+c+d is

Let (A)/(a)=(B)/(b)=(C )/(c )=(D)/(d) . Prove that sqrt(Aa)+sqrt(Bb)+sqrt(Cc)+sqrt(Dd)=sqrt((a+b+c+d)(A+B+C+D)) .

If a,b,c,d are four positive numbers then (A) ((a)/(b)+(b)/(c))((c)/(d)+(d)/(c)) =4.sqrt((a)/(c))(C)(a)/(b)+(b)/(c)+(c)/(d)+(d)/(e)+(e)/(a) =(1)/(5)

If a,b,c,d are four positive numbers that (i)((a)/(b)+(b)/(c))((c)/(d)+(d)/(e)) =4.sqrt((a)/(c))(iii)(a)/(b)+(b)/(c)+(c)/(d)+(d)/(e)+(e)/(a) =(1)/(5)

If (a)/(b) = (c)/(d) , show that : (a + b) : (c + d) = sqrt(a^(2) + b^(2)) : sqrt(c^(2) + d^(2))

If a,b,c,d are in proportion then prove that sqrt((a^2+5c^2)/(b^2+5d^2))=a/b

If a,b,c,d are in proportion, then prove that sqrt((a^2+5c^2)/(b^2+5d^2))=a/b

If a,b,c,d are in continued proportion,prove that: a:b+d=c^(3):c^(2)d+d^(3).

If (2a+3b)(2c-3d)=(2a-3b)(2c+3d) then (a)/(b)=(c)/(d)( b) (a)/(d)=(c)/(b)( c) (a)/(b)=(d)/(c)(d)(b)/(a)=(c)/(d)