Home
Class 11
MATHS
y=ae^(mx)+be^(-mx),(d^2y)/dx^2=m^2y is e...

`y=ae^(mx)+be^(-mx),(d^2y)/dx^2=m^2y is equal to m^2(ae^(mx)-be^(mx))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=ae^(mx)+be^(-mx), then (d^(2y))/(dx^(2))-m^(2)y is equal to m^(2)(ae^(mx)-be^(-mx))1 none of these

If y=ae^(mx)+be^(-mx) then (d^(2)y)/(dx^(2)) is

If y=ae^(mx)+be^(-mx)," then "y_(2)=

If y=Ae^(mx)+Be^(nx) ,then (d^(2)y)/(dx^(2)) is equal to , (a) (m+n)(dy)/(dx)+mny , (b) (m+n)(dy)/(dx)-mny , (c) -(m+n)(dy)/(dx)+mny , (d) None of these

If y= Ae^(mx) + Be^(-mx) , show that (d^2y)/dx^2-m^2y=0 .

If y=ae^(mx)+bcosmx then prove that (d^2y)/(dx^2)+m^2y=2am^2e^(mx)

If y=a sin mx+b cos mx, then (d^(2)y)/(dx^(2)) is equal to -m^(2)y(b)m^(2)y(c)my(d)my

If y=ln(e^(mx)+e^(-mx)) , then what is (dy)/(dx) at x = 0 equal to ?

if y=(A+Bx)e^(mx)+(m-1)^(-1)e^(x) then (d^(2)y)/(dx^(2))-2m(dy)/(dx)+m^(2)y is equal to:

int_( then K,P=)^( If )(1)/(ae^(mx)+be^(-mx))dx=K tan^(-1)(Pe^(mx))+C