Home
Class 11
MATHS
The centroid of an equilateral triangle ...

The centroid of an equilateral triangle is (0, 0). If two vertices of the triangle lie on `x+y=2sqrt(2),` then one of them will have its coordinates. (a) `(sqrt(2)+sqrt(6),sqrt(2)-sqrt(6))` (b)`(sqrt(2)+sqrt(3),sqrt(2)-sqrt(3))` (c)`(sqrt(2)+sqrt(5),sqrt(2)-sqrt(5))` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

(sqrt(2))/(sqrt(6)-sqrt(2))-(sqrt(3))/(sqrt(6)+sqrt(2))

The value of 2(sqrt(2)+sqrt(6))/(3sqrt(2+sqrt(3)))+sqrt(2+sqrt(3))+sqrt(2-sqrt(3))

(1)/(sqrt(2)+sqrt(3))-(2)/(sqrt(5)-sqrt(3))+(3)/(sqrt(5)-sqrt(2))=

1/(sqrt(3)+sqrt(2))-2/(sqrt(5)-sqrt(3))-3/(sqrt(2)-sqrt(5))

(1)/(sqrt(3)+sqrt(2))-(2)/(sqrt(5)-sqrt(3))-(3)/(sqrt(2)-sqrt(5))

(2)/(sqrt(3)+sqrt(5))+(5)/(sqrt(3)-sqrt(5))=x sqrt(3)+y sqrt(5)

(sqrt(5)-sqrt(2))(sqrt(2)-sqrt(3)) (sqrt(5)-sqrt(3))^(2)

(sqrt(5)-sqrt(2))(sqrt(2)-sqrt(3)) (sqrt(5)-sqrt(3))^(2)

(sqrt(5)-sqrt(2))(sqrt(2)-sqrt(3)) (sqrt(5)-sqrt(3))^(2)

(3sqrt(2))/(sqrt(6)-sqrt(3))+(2sqrt(3))/(sqrt(6)+2)-(4sqrt(3))/(sqrt(6)-sqrt(2))